Master Theses
Master Theses
Master Theses
/ Current and completed projects
Ongoing
Bech Holtan J., Nudging Towards Healthy Food Choices: Exploring the Power of Attractive Images over Deep Learning-based Food Recommender Systems, UiB, ongoing. Supervisors: Christoph Trattner.
Berget Monclair T., News Recommendation based on Incorporation of User Behaviors and News Data, UiB, ongoing. Supervisor: Mehdi Elahi, Thomas Husken.
Brunner, J. M., Cheapfake and Deepfake Media Detection Using Transformers, UiB, ongoing.
Bødtker D., Nudging Stories in News Search: The Role of Visual Attractiveness and Presentation Order Effects on Online News Consumption, UiB, ongoing. Supervisors: Alain Starke, Christoph Trattner.
Eknes-Ripl J., Using a Large Language model to present persoalised headlines in news recommender systems, UiB, ongoing. Supervisors: Alain Stark, Jia-Jeng.
Fougner., Systems in Media Domain, UiB, ongoing.
Haugbjørg Haugen, A., Political Engagement on the Twitch Streaming Platform, UiB, ongoing.
Kjartansson Mørch B., Analysis of Popularity Bias Effect in Media Recommendation, UiB, ongoing. Supervisor: Mehdi Elahi, Anastasiia Klimashevskaia.
Lium T., Context-aware Recommender, UiB, ongoing. Supervisor: Mehdi Elahi, Astrid Tessem.
Måseidvåg P., Virtual Reality as a Collaborative technology to support decision making in remote collaboration, UiB, ongoing. Supervisor: Morten Fjeld.
Salterød Sjåvik M., Bias in Large Language Models, UiB, ongoing. Supervisor: Samia Touileb.
Sjøen V., Digital Image Forensics In The Wild: Social Media Platforms, UiB, ongoing, Bergen 2022. Supervisor: Duc Tien Dang Nguyen.
Solberg Jensen, A., Platformization and listener loyality in the podcast, UiB, ongoing, Bergen 2024. Supervisor: Brita Ytre-Arne.
Soltvedt Bjørndal-Riis S., Gendered named entity recognition for Amedia’s user-base analysis, UiB, ongoing. Supervisors: Lilja Øvrelid, Emiliano Guevara, and Samia Touileb.
Statle Nævdal I., Personalised News Summarization, UiB, ongoing. Supervisor: Samia Touileb, Lubos Steskal.
Stokke E., Automated Speech to Text (ASR) Quality Metric, together with TV 2, UiB, ongoing. Supervisor: Samia Touileb.
Sæter, S., Image and Video Metadata Analysis, UiB, ongoing.
Taule Nordli J., VR Memory Palaces: Can walking Improve Meorization, UiB, ongoing, Bergen 2024. Supervisor: Morten Fjeld.
Wu Chik B., News Report Adaptation for Synthetic Voice Presentation, Uib, ongoing.
Åldstedt S., Investigating and Measuring Bias in Generative Language Models, UiB, ongoing. Supervisor: Samia Touileb.
Completed
Aga Nordli A., Preventing Privacy Invasive Queries in Knowledge Graphs, UiB, Bergen, 2024. Supervisor: Andreas Lothe Opdahl.
Svellingen Lavik B. A., Blackboard model for Semantic Analysis of News Texts, UiB, Bergen, 2024. Supervisor: Andreas Lothe Opdahl.
Abstract
This project investigates the application of a Blackboard model for rich-text annotation, focusing on the research, development, and practical use of such a model. The research method employed in this project is the construction of a blackboard model artifact specifically designed for rich-text annotation.
This model allows various annotation components to operate independently and in parallel, based on their input-output dependencies rather than a hier-archical structure. This significantly enhances the system’s flexibility. The primary aim is to create a model that supports the seamless replacement of components, ensuring future-proofing and adaptability as NLP technologies evolve. The main findings of this research demonstrate that a Blackboard model can effectively manage multiple, independent annotation components, facilitating easier updates and integration of new technologies. This flexibility addresses a critical gap in existing systems, which often struggle with scalability and adaptability. The implications of these findings suggest that adopting a Blackboard model for text annotation can lead to more resilient and maintainable NLP systems, providing a practical solution for researchers and developers working with large datasets of raw text.
Kvarv, R., A., Bruk av generative språkmodeller til å trekke ut geografisk informasjon om hendelser, UiB, Bergen 2024. Supervisor: Bjørnar Tessem.
Abstract
Denne avhandlingen fokuserer på utviklingen av programvare for å ekstrahere geospatiale data fra nyhetsartikler ved hjelp av GPT-3/4 og lagre det i en kunnskapsgraf. Målet er å løse utfordringen med å trekke ut presis informasjon om steder, og geografiske forhold fra ustrukturerte tekster. Ved å utnytte avanserte tekstanalyse- og kunstig intelligensmetoder, ønsker prosjektet å støtte journalister og bidra til informasjonsanalyse.
Erlandsen, M., Bruk av ChatGTP for klassifisering av byggesaksdokumenter: En studie i prompt engineering, UiB, Bergen 2024. Supervisor: Andreas Lothe Opdahl.
Abstract
Denne masteroppgaven undersøker hvordan ChatGPT, en avansert språkmodell utviklet av OpenAI, kan anvendes for å effektivisere nyhetsdeteksjon og -produksjon. Hovedmålet er å utvikle en pipelinje som kan klassifisere byggesaksdokumenter som nyhetsverdige eller ikke, basert på deres innhold og relevans. Det blir også presentert en løsning for forhåndsbehandling av data som del av pipelinjen.
Gjennom en iterativ designprosess ble forskjellige prompt-strategier testet, inkludert zero-shot, few-shot, chain-of-thought og tree-of-thought. Resultatene viser at avanserte prompting-teknikker klarer å klassifisere byggesaksdokumenter med høy nøyaktighet, og kan bidra til å effektivisere arbeidet til journalister.
Oppgaven konkluderer med at ChatGPT har betydelig potensial for å støtte journalistisk arbeid med en gjennomsnittlig klassifiseringsnøyaktighet på 77%, og presenterer også muligheter for videre forskning for å forbedre modellens nøyaktighet og redusere risikoen for feilinformasjon.
Bulko, H., Vi må get with the program, eller fuck off. En kvalitativ studie av hvordan komikere erfarer humorregime i Norge i dag, UiB, Bergen 2024. Supervisor: John Magnus Dahl.
Abstract
Debatten rundt humor er like dagsaktuell som den alltid har vært, både i medier og hos publikum. Med utgangspunkt i debatten rundt humor, tar denne masteroppgaven for seg hva, hvor og hvordan komikere anser de uskrevne reglene for humor å være. De uskrevne reglene bestemmer hva som er akseptabelt å vitse om i forskjellige kulturelle og sosiale sammenhenger, noe som betegnes som humorregime. Ved hjelp av kvalitative intervjuer med kjente norske standup-komikere, som Kevin Kildal, Dag Sørås, Sigrid Bonde Tusvik, Tore Sagen og Henrik Fladseth, utforskes deres erfaringer og refleksjoner rundt hva som er tillatt innenfor humor, hvor grensene går og hvordan de uskrevne reglene håndheves.
Komikerne uttrykker at de kan vitse om alt, men det kommer frem at de likevel forholder seg til uskrevne regler. Disse reglene er formet av samfunnets normer, publikums forventninger og medienes reaksjoner. Funnene indikerer at tilhørighet til tema, opplevelse av autentisitet og publikums forventninger er sentrale faktorer som bestemmer hva de uskrevne reglene innenfor humor er.
De uskrevne reglene finner man i tidsånden man lever i, der mer spesifikt publikum, medier og internaliserte regler hos komikerne selv peker seg ut som steder man finner de uskrevne reglene. Det er også her man ser de uskrevne reglene bli håndhevd, med kanselleringskultur, publikum sine reaksjoner og mediene sin makt til å påvirke publikum og tidsånden.
Oppgaven konkluderer med at humorregimer er dynamiske og påvirkes kontinuerlig av endringer i kulturelle normer og samfunnets tidsånd. Komikere balanserer mellom å utfordre og tilpasse seg de uskrevne reglene for å kunne utøve overskridende humor for å ikke bli utsatt for negative reaksjoner fra publikum. Samtidig er det viktig å opprettholde en form for autentisitet både overfor publikum og seg selv. Debatten rundt humor som man har sett de siste årene har handlet mye om krenking og kansellering, der komikere ytrer at dette er negativt for humor som sjanger. Samtidig viser funnene i denne oppgaven at komikerne ikke er bekymret for å bli kansellert, men heller frykten for den direkte negative reaksjonen fra publikum i øyeblikket. Her er det det unge publikummet som peker seg ut som de som lettest blir krenket, og komikerne nevner spesielt studenter som en lettkrenket gruppe.
Gjennom en grundig analyse av intervjudata og teoretiske perspektiver på humor, gir oppgaven en unik innsikt i hvordan norske standup-komikere opplever og navigerer gjennom humorregimene i dagens tidsånd. Forskningen konkluderer med at komikere i Norge i dag forholder seg til humorregimer, selv om de ytrer at de kan vitse med alt.
Thorland, T., Large language models for document classification, UiB, Bergen 2024. Supervisor: Andreas Lothe Opdahl.
Abstract
This thesis is a research endeavor to explore the efficacy of large language models in conjunction with document classification.
This thesis started out as a project started together with the “Byggebot”- project, started by the PolarisMedia-group, after my thesis advisor Professor Andreas Lothe Opdahl was contacted by the project lead to see if he was interested in the idea. The original goal of this project was to see whether or not one could utilize large language models as a means of classifying “news-worthy” stories, with a focus on municipal building permit documents.
The municipality i decided on working in was Tromsø, as one of the local newspapers were working on a similar project, and were originally interested in collaborating. I eventually has issues with bad data, as there was the need to acquire them manually, and the municipal database of Tromsø had less than desirable document markings and classifications. After some trial and error, the decision on shifting the thesis to document classification itself, as this was where most of the time was spent on this project, and it seemed like an interesting angle to research. After rigorous attempts at fine-tuning models and semi-manually classified verification documents, it was unclear whether or not the models were being verified well enough because of lacking data. In the end the decision ended up being to use multiple different state-of-the-art models and compared them against each other to test the agreement between them when being tested against multiple different datasets, trying to classify each one with a similar prefixed-prompt. In the end the resulting scores seem to indicate that certain models tend to agree with each other. The argument is then that the probability of the classification being wrong when multiple models have agreed to this extent, is moderately low. The models are by no means perfect, but it seems to be a trend for certain ones to be more effective than others in some of the domains tested.
Blücher, K., A. J., IBM Watson Debater og ChatGPT som støtteverktøy for journalistikk, UiB, Bergen 2024. Supervisor: Bjørnar Tessem.
Abstract
Kunstig intelligens er mer aktuell enn noen gang, og det utforskes stadig hvordan det kan brukes til å effektivisere arbeidsprosesser. Siden journalistyrket handler mye om skriving og produsering av nyheter, artikler og tekster, er språkmodeller og generativ KI veldig relevant for denne bransjen. De siste årene har generativ KI blitt tatt mer i bruk av nyhetsmedier og journalister, og da spesielt ChatGPT. Mens ChatGPT er en språkmodell som kan hallusinere og generere falske fakta, finnes det også språkmodeller som IBM Watson Debater som er faktabaserte og dermed ikke kan hallusinere.
Denne masteroppgaven er et designforskningsprosjekt som utforsker hvordan man kan designe et støtteverktøy som kombinerer IBMs Watson Debater og OpenAI sin ChatGPT, slik at journalister kan utnytte det til tekstgenerering.
Støtteverktøyet har blitt utviklet gjennom to iterasjoner, hvor det ble gjort en formativ evaluering av første versjon, før den siste designiterasjon ble utført basert på evalueringen. Den formative evalueringen bestod av intervjuer med brukertester hvor brukere med relevant stilling og kunnskap deltok. Gjennom disse intervjuene ble det avdekket to interessante vinklinger av støtteverktøyet, og det ble derfor utviklet to forskjellige versjoner i den siste designiterasjonen.
Låg, T., Large-scale Evaluation of Context-Aware Recommender Systems in Media Domain, UiB, Bergen 2024. Supervisor: Mehdi Elahi, Lars Skjærven, Astrid Tessem.
Abstract
In the rapidly growing media streaming platforms, it has become very challenging for users to browse through the catalogue and find interesting media items to watch. As such, personalized recommender systems are a vital component of this domain. Recommender systems are digital tools that have shown to be effective in supporting users in the discovery of items tailored to their personal preferences and needs.
Traditional recommender systems build profiles of users based on their static preferences (e.g., clicks or ratings) provided for items and utilize these profiles to generate relevant recommendations for users. However, these systems fail to consider that users’ behaviors and preferences are not necessarily static properties – they change over time and depend on their contextual circumstances at the time of consumption. The most relevant items when the user was curled up on the couch watching TV in the evening might not be the most relevant items when they’re on the school bus and watching from their phone.
In this thesis I address this problem by proposing a recommender system that utilizes contextual factors such as `Time of Day’ and `Day of Week’. This methodology has been tested under two conditions: our offline evaluation setup, and online A/B testing on the largest Norwegian media streaming platform, TV 2 Play. The results show that the proposed recommender system is highly effective in generating recommendations for real users and, in the most of the cases, surpass today’s industry-standard traditional recommender systems with respect to various metrics, including Precision, Recall, F1, MAP, and Coverage.
Haaland, V. M., Personalized Advertisement Recommendations Using Implicit Feedback, UiB, Bergen 2024. Supervisor: Mehdi Elahi
Abstract
Online advertising is a big part of everyday life for the average internet user, and an important source of income for most mass media companies. Studies have shown that users often prefer ads that are relevant to their interests, and that users that have a positive opinion towards advertisements are less likely to use ad blockers. It is therefore beneficial for companies to personalize advertising, not only because it can increase their revenue, but also to prevent users from turning to ad blockers. Displaying personalized advertisements can be done through the use of collaborative filtering, which is a popular technique in recommender systems. In the context of advertising, collaborative filtering models can recommend an ad to a user by identifying other users with similar preferences, and then choosing an ad that they have liked. The challenge in this scenario is that users don’t explicitly express which ads they like and which they dislike. Users may instead click on ads, thereby implicitly indicating their preferences. This type of implicit feedback does however raise several challenges. One of the central challenges is how to interpret the lack of negative feedback, i.e. the events where a user has seen an ad without clicking on it. Does zero clicks mean that the user disliked the ad, is indifferent, or did they simply not notice it?
This master’s thesis aims to address the challenges posed by implicit feedback data, with the primary goal being to improve personalized online advertising. The research consists of two main experiments based on industry data provided by Amedia, one of the largest media companies in Norway. I propose three novel approaches to infer user preferences towards advertisements, alongside three approaches that are more traditional. By inferring user preferences, it becomes possible to employ collaborative filtering methods such as matrix factorization for generating advertisement recommendations. Three different matrix factorization models were chosen for this task. Through a comprehensive offline evaluation, a comparative analysis was conducted in order to uncover which of the scoring approaches resulted in the highest quality advertisement recommendations across several performance metrics. The findings from the experiments suggest that the proposed novel approaches were generally superior at representing user preferences compared to the more traditional approaches. Overall, the research conducted in this thesis addresses some of the challenges with using implicit feedback data for personalization, and proposes how this topic can be further explored in order to improve personalized advertising.
Hagen Risberg, K., Smidig utvikling innen mediesektoren, UiB, Bergen 2024. Supervisor: Bjørnar Tessem.
Abstract
Oppgaven starter med en grundig gjennomgang av teoretiske perspektiver ved smidig utvikling, inkludert metodikkens historie og nøkkelelementer som Scrum, Kanban, Lean og DevOps. Denne teoretiske rammen anvendes for å forstå hvordan smidige metoder tilpasses og implementeres i mediebransjen, en sektor kjennetegnet ved sitt konstante behov for innovasjon og rask respons på forbrukertrender. Ved hjelp av forskningsmetoden som omfatter detaljerte observasjoner og dybdeintervjuer, undersøker studien spesifikke praksiser og utfordringer ved bruk av smidige metoder i mediebedrifter. Datainnsamlingen avdekker hvordan smidighet manifesterer seg gjennom sprinter, bedriftskultur, prosjektstyring, og ledergruppers rolle i defineringen av mål og prioriteringer.
Resultatene fra denne studien viser at smidige metoder har en betydelig positiv innvirkning på mediebedrifters evne til å navigere i et konkurransepreget marked. Smidighet fremmer en kultur for kontinuerlig læring, tilpasning, og kundesentrert utvikling, som er essensielt for å opprettholde relevans og suksess i medieindustrien. Samtidig identifiserer oppgaven utfordringer knyttet til implementeringen av smidige metoder, inkludert behovet for balanse mellom fleksibilitet og struktur, samt viktigheten av effektiv kommunikasjon og samarbeid på tvers av forskjellige avdelinger. I diskusjonsdelen vurderes funnene i lys av eksisterende litteratur, og oppgaven reflekterer over hvordan smidige metoder kan videreutvikles og tilpasses for å møte mediebransjens unike behov. Avslutningen viser til de viktigste funnene rundt korte sprint perioder, pause perioder mellom sprintene og hvordan bedriftene i studien har delt opp ansvarsområder for de forskjellige avdelingene. Det kommer også frem hvordan det å produsere resultater har et mye høyere fokus enn å vise til prosessen rundt.
Oppgaven bidrar med verdifull innsikt i det praktiske arbeidet med smidig utvikling i mediebransjen, og tilbyr veiledning for bedrifter som ønsker å forbedre sine smidige praksiser. Den avslutter med forslag til videre forskning som bygger på de etablerte funnene.
Espenes, A., Ikke-debatten i debatten: Skyttergravsdynamikk og ekkokammer i norsk nettdebatt under Antonsen-saken, UiB, Bergen 2024. Supervisor: John Magnus Dahl.
Abstract
Oppgaven tar utgangspunkt i hvordan den digitale offentligheten har gjort det mulig for virtuelt hvem som helst å ytre seg, noe som kan ha ført til en økning i hets og diskriminerende holdninger på nett. Med skyttergravsdynamikk og ekkokammer i sentrum, undersøker jeg hvordan disse fenomenene bidrar til å opprettholde og forsterke hatefulle ytringer. Målet med oppgaven er å vise hvordan Antonsen-saken kan bidra til å forklare disse dynamikkene i norsk nettdebatt.
Sentrale begreper som digital offentlighet og fragmentering skal forklare og støtte funnene i oppgaven. Jeg diskuterer hvordan den digitale offentligheten gir rom for ytringer som kan oppfattes som politisk ukorrekt og støtende i den fysiske verden, men som gjerne uttrykkes når det fysiske aspektet uteblir.
Alternative og sosiale medier skaper nye utfordringer ved at debattanter angriper hverandre uten å søke felles forståelse. Den digitale offentligheten er ikke bundet til én nettside, men til hundrevis av mediekanaler farget av forskjellige ideologier, argumenter, meninger og verdensoppfatninger. Nettdebatten blir dermed uoversiktlig og kompleks. For å bekjempe desinformasjon, diskriminering og desorientering er det nødvendig å gjenkjenne ekkokamre og skyttergravsdynamikk i ulike typer medier. Gjennom denne oppgaven utforsker jeg hvordan disse debattarenaene fungerer i praksis, og hvordan det ofte oppstår en ikke-debatt i debatten.
Alsvåg S., Addressing the Next-Poster Problem: A Hybrid Recommender System for Streaming Platforms, together with TV 2, UiB, Bergen 2024. Supervisor: Christoph Trattner
Abstract
Rosenvinge F., Automated Identification of Severe Errors in Speech to Text Transcripts, together with TV 2, UiB, Bergen 2023. Supervisor: Samia Touileb, Lubos Steskal.
Abstract
Sviland V., Designing Map-Based Visual Storytelling for News Articles in Mixed Reality, UiB, Bergen 2023. Supervisors: Frode Guribye.
Abstract
Røysland Aarnes P., Named Entity Recognition in Speech-to-Text Transcripts, together with TV2, UiB, Bergen 2023. Supervisors: Samia Touileb, Lubos Steskal.
Abstract
Espeseth F., Media Analytics for Personalization and Advertisement, together with Amedia, UiB, Bergen 2023. Supervisors: Mehdi Elahi, Igor Pipkin.
Abstract
Bergh S., Personalized Recommendations of Upcoming Sport Events, together with TV 2, UiB, Bergen 2023. Supervisor: Mehdi Elahi.
Abstract
Forstner S., Designing a Dyslexia-Friendly Interaction with News Articles, UiB, Bergen 2023. Supervisor: Bjørnar Tessem.
Abstract
Hansen K., Nyheter fortalt slik unge voksne liker det, UiB, Bergen 2023. Supervisor: Brita Ytre-Arne.
Abstract
Jahr O., Creating an Agglomerative Clustering Approach Using GDELT, UiB, Bergen 2023. Supervisor: Andreas L. Opdahl.
Abstract
Kirkhorn T., Generative språkmodeller for automatisert tekstforenkling: Tilpasning av nyhetsartikler for lesbarhet hos personer med dysleksi, together with NRK and NTB, UiB, Bergen 2023. Supervisor: Bjørnar Tessem.
Abstract
Klingenberg P., Using content- and behavioural data for recommendations in the Norwegian news market, together with BT, UiB, Bergen 2023. Supervisor: Mehdi Elahi.
Abstract
Moholdt E., Detecting Out-of-Context Image-Caption Pairs in News: A Counter-Intuitive Method, UiB, Bergen 2023. Supervisor: Duc-Tien Dang-Nguyen.
Abstract
Johannessen Skivenesvåg , M., Evaluating Pre-trained Language Model Strategies for Knowledge Graph Extraction: A Comparative Analysis, UiB, Bergen 2023. Supervisor: Andreas Lothe Opdahl.
Abstract
Nilsen A., Investigating the Effects of Instagram Filters on Perceived Trust in Online News Posts, UiB, Bergen 2023. Supervisor: Alain Starke, Christoph Trattner.
Abstract
Gjelsvik Lunde M., Fine-Grained News Classification, UiB, Bergen 2023. Supervisor: Enrico Motta.
Abstract
Rosnes D., Evaluating Feature-Specific Similarity Metrics using Human Judgments for Norwegian News, UiB, Bergen 2023. Supervisor: Christoph Trattner, Alain Starke.
Abstract
This master’s thesis delves into the measurement of similarity between news articles within the Norwegian news domain. Four central questions form the basis of the thesis: the identification of information cues utilized by readers, the effectiveness of specific similarity metrics, the comparison with other domains, and the exploration of differences in human similarity ratings between national and local news. Key findings include that a Sentence-BERT metric, applied to the body text, best represented human similarity judgments. Compared to other news domains, the Norwegian news domain showed stronger correlations for a majority of the metrics. A minimal contrast was observed between human ratings for local and national news, with local news considered slightly more similar. This disparity between local and national levels, however, did not markedly impact how metrics represented human similarity judgments. The findings from this thesis may provide valuable insights for enhancing news recommendation systems within the news sector.
Ulvolden H., Complexity-based Ordering of Suffixes in Norwegian, UiB, Bergen 2023. Supervisor: Koenraad de Smedt.
Abstract
Vlasenko A., Multi-List Recommendations for Personalizing Streaming Content, together with TV 2, UiB, Bergen 2023. Supervisor: Christoph Trattner.
Abstract
Westli W., Minimum ressursbruk. Maksimum utbytte., together with TV 2, UiB, Bergen 2023. Supervisor: Lars Nyre.
Abstract
Århus S., Developing a conceptual framework for sentiment analysis using LLMs, UiB, Bergen 2023.
Abstract
Postponed access: the abstract will be accessible after 2024-06-01.
Ekren K., Experiments on Satire Detection for Norwegian News Articles, together with Web64, UiB, Bergen 2022. Supervisor: Samia Touileb.
Abstract
The spread and amount of misinformation is increasing. The World Economic Forum (WEF) has listed it as one of the main threats to our society (Howell, 2013). Satire is one of the problems when it comes to misinformation, more specifically news satire. News satire is a genre of satire that resembles the characteristics of true journalistic reporting, while keeping the main objective of satire that is: use of a combination of humor and irony, usually with exaggeration, to expose and make fun of political or newsworthy issues.
In this thesis we present to the best of our knowledge, the first attempt to automat- ically detecting satire in Norwegian news articles. Automatically identifying satirical news pieces can aid in minimizing the potential deceptive impact of satire. To this end, we employ three classification methods, namely Naïve Bayes, SVM (support-vector machines) and logistic regression, based on TF-IDF (Term Frequency Inverse Docu- ment Frequency) feature weights. All three machine learning models achieved similar results.
In total, our dataset incorporates 6322 articles containing a balanced collection of satirical and non-satirical news texts from various domains (3161 satirical and 3161 non-satirical). Using this corpus we proposed three cross-domain satire detection tasks, one considering only the use of headlines, one considering only the use of article texts, and lastly one considering full articles, including both headlines and texts.
After experimenting on the test sets, we achieved the top accuracy score of 98% using only text as input, and the combination of title and text as input, with SVM. We observe that satire detection on news headlines was significantly more challenging, the top accuracy score being 76% using SVM. We believe that this shows that the automatic detection of satire using only headlines is quite challenging. Especially when using simple machine learning approaches, and we believe that this might be due to the length of headlines and the need for more context.
Hatlebakk T., Automated Moderation: Detecting Irony in a Norwegian Facebook Comment Section using a Longformer Transformer Model with a Context Encoded Dataset, together with TV 2, UiB, Bergen 2022. Supervisor: Bjørnar Tessem.
Abstract
Irony is a complex phenomenon of human communication and due to its con- textual nature has been notoriously difficult for machine learning algorithms to detect. With an established practical definition of irony based in the environ- ment of Facebook comment sections. Used together with a Norwegian language pre-trained BERT model converted to a long version that supports longer text inputs, and a Norwegian Facebook comment dataset with contextual article and reply comment text included. It was found that the long BERT model trained on the context included inputs dataset outperformed the short BERT models trained on datasets of the same and more comments, but without the contextual infor- mation encoded.
Jakobsen D., Visual analysis, recommendation and personalization, UiB, Bergen 2022. Supervisor: Mehdi Elahi.
Abstract
Advertisement is one of the primary sources of revenue for companies. Advertisement can result in increased sales for the companies by promoting their products or by hosting the advertisement of the other companies. While there have been many studies investigating the effectiveness of the advertisement in various domains, there are still challenges to be addressed. Notable challenges are overabundance, privacy, spamming, or irrelevant placement of advertisement. The results of such challenges can be poor quality of advertisement irrelevant to the audience interest or irrelevant in the context of the content in which it has been shown. A colourful and shiny image in an advertisement, promoting a luxury product that is placed together with a news article discussing the growing poverty in certain regions of the world can be an example. This can lead to dissatisfaction of the audience when experiencing a particular irrelevant advertisement. Personalisation techniques can be useful in addressing such challenges. For example it can be used to match the advertisement shown in news outlets to the article. Such techniques can analyse the content of the news articles and find right advertisement that is better suited to the article. However, this requires rich data of displayed advertisement which are not always available. That can be one of the reasons why viewing an irrelevant advertisement is still part of our everyday experience. In this thesis, I have explored the potential of using automatic visual analysis to obtain better representation of the advertisement and to improve the relevance of advertisement to the audience. For such analysis, a number of visual features has been extracted from the images of the advertisements and analysed to better understand their correlations with audience behaviour online when interacting with advertisement campaigns. I have received the data set from Amedia, one of the largest media companies in Norway. The data set includes campaigns and audience behaviour, and the images associated with the campaigns. Four analyses have been conducted in the thesis including, exploratory analysis and correlation analysis. Machine learning models have been built (using CatBoost) based on the audience behaviours and visual features extracted from advertisement. In addition a method called SHAP (SHapley Additive exPlanations) has been used to find explanation of model prediction. The contribution of this thesis includes preprocessing and exploratory analyses of the industry data, a novel data set containing the visual features extracted from the images of the advertisement, a Python prototype, and the results of analyses based on this prototype.
Johansen S., Expanding Digital Workspaces Using Cross-Device Interactive Applications, UiB, Bergen 2022. Supervisor: Morten Fjeld.
Abstract
In this thesis I explore the use of a cross-device interactive application and how single individuals could make use of multiple connected devices by themselves for their work. I have created a functional prototype that is used to evaluate the workload of a single device versus the use of multiple devices with the use of in-built cross-device interaction capability. The process of this study consisted of research, prototyping, programming the application, and performing a study to analyze the data gathered. Due to the covid-19 situation, the project had major re-routes in 2021 to handle its effects, resulting in an additional year of work to complete it.
Khutarniuk Y., Cross-Lingual Approaches to Identifying Argument Components and Relations in Norwegian Reviews, UiO, Oslo 2022. Supervisors: Samia Touileb, Lilja Øvrelid.
Abstract
Argument mining is the process of automatic extraction of certain argu- mentation structures from data. Argument mining consists of several stages such as argument component detection, argument component clas- sification, and argumentative discourse analysis. The lack of training data in low resource languages is a common issue in argument mining applica- tions. In this work we analyse the possibilities for the application of zero- shot and few-shot language transfer models trained on the language ma- terial in a resource-rich language (English) for the tasks of argument com- ponent detection, and argument component classification in a low-resource language (Norwegian) with the aim to find out if these techniques can help overcome the challenge of no available training data. In addition, we com- pare models based on different transformer architectures and experiment with additional hand-crafted features.
Olsen D., Movie Recommendation based on Stylistic Visual Features, together with TV 2, UiB, Bergen 2022. Supervisor: Mehdi Elahi.
Abstract
When a new movie is added to the catalogue of a recommendation-empowered movie streaming platform, the system exploits various types of data (e.g., clicks, views, and ratings) in order to generate personalized recommendations for the users. However, in the absence of sufficient data, undesired situations can arise where the system may fail to include the new movie in the recommendation list. This is known as the Cold Start problem. A solution can be using content features attributed to the movies (e.g., tags, genre, and description). However, such features require expensive editorial efforts and it is not necessarily available in good quantity or quality.
This thesis investigates the viability of using novel stylistic visual features as meta- data to incorporate in the movie recommendation process. The visual features represent the stylistic properties of the movies and can have a wide range of forms, e.g., color palette, contrast, and brightness. The stylistic visual features can be automatically ex- tracted, and hence, do not require any (manual) human annotation. Accordingly, the thesis proposes a novel technique for generating recommendation based on such visual features and describes the technical details for different stages of the process. The tech- nique has been evaluated in both offline and online experiments and different scenarios, i.e., cold start and warm start. The online experiment has been conducted in collabo- ration with TV 2, one of Noways largest digital streaming platforms adopting an A/B testing methodology. The proposed technique includes utilizing the extracted visual features when used individually (in a similarity based recommendation process), and when combined with other types of data (in a hybrid recommendation process). The results of the experiments have been promising and shown that the stylistic visual fea- tures can be beneficial particularly in the hybrid recommendation process in the cold start scenario.
Solberg V., News Recommendation based on Human Similarity Judgment, together with Bergens Tidende, UiB, Bergen 2022. Supervisors: Christoph Trattner, Alain Starke.
Abstract
Similar item recommendation is one of the most popular types of recommender systems. As the name implies, the objective is to recommend items that are similar to a reference item. The news domain is one of the many that employ this form of recommendation, which utilize similarity functions in order to calculate the similarity. In this study, human judgments of article similarity were acquired using an online user study in which each of the 173 participants evaluated the similarity of 12 pairs of articles. Each of the 12 article pairs had their own unique characteristics. One pair would be made up of two completely dissimilar articles, while the other pairs had either a shared topic, a named entity in common, publication dates in close proximity, or some combination of these three characteristics. Half the pairs contained articles from the News (i.e., recent events) category, while the other half contained Sport articles. The similarity of the same article pairings was then calculated utilizing various similarity functions, and the correlation between human judgment and function scores was computed. This thesis found that the correlation ranged from weak to strong, depending on the function. The thesis also found that the correlation is largely dependent on the whether the articles have certain characteristics in common. On average, the functions correlated more strongly to human judgment if the articles belonged the category News (i.e., recent events) than Sport. The functions were also better at predicting human similarity when the articles in question were relatively similar to one another. The novel work presented in this thesis shows that the correlation between human judgment and similarity functions can be stronger than previous work has suggested, if news articles are paired in a meaningful way.
Stenerud B., Reaksjonsvideoer. En studie av unge voksnes opplevelser med mediefenomenet reaksjonsvideoer, UiB, Bergen 2022. Supervisor: John Magnus Dahl.
Abstract
Denne oppgaven undersøker hvordan unge voksne benytter seg av mediefenomenet reaksjonsvideoer. Ettersom plattformer som YouTube og Twitch blir mer populære og sentrale i folks hverdag vil man naturligvis også bli smittet av trender. Den siste tiden har det blitt populært med reaksjonsvideoer som handler om at streamere eller innholdsprodusenter filmer seg selv reagere til hva enn som skjer på skjermen deres. Et eksempel på dette er Asmongold som har rundt 200 000 seere på hans livestream av at han selv reagerer og kommenterer på rettsaken til Johnny Depp og Amber Heard. Fenomenet vil bli sett i lys av opinionsledere og parasosiale relasjoner. Gjennom kvalitative dybdeintervjuer tar studiet for seg 10 informanters opplevelser, samt hva de får ut av fenomenet. Studien ser og på hvordan informantene selv tolker og forklarer fenomenet, og hvordan de bruker reaksjonsvideoer annerledes fra «vanlige» videoer. Funnene i denne studien tyder på at informantene bruker reaksjonsvideoer som en måte å få mer informasjon om det man ser på, og for å få inn flere perspektiver. Reaksjonsvideoer bidrar og til økt selskap mens informantene ser på videoene. På denne måten opplever informantene at de ser på en video «med» noen som de kan føle at de kjenner. Man kan også se at informantene bruker reaksjonsvideoer, og kommentarfelt, som en måte å bekrefte egne tanker og meninger, samt at slike videoer fungerer som en måte å se på andre gjenoppleve det man selv har gjort.
Kvasnes Olsen D., Movie Recommendation based on Stylistic Visual Features, UiB, Bergen 2022. Supervisor: Lars Skjærven, TV 2.
Abstract
Årmot I., Smarttelefonen som ein del av konsertopplevinga, UiB, Bergen 2022. Supervisor: John Magnus Dahl.
Abstract
Smarttelefonen er ein integrert del av kvardagslivet vårt og me brukar den til fleire praktiske formål, og upraktiske. I kvardagen blir smarttelefonen hylla fordi den har fleire bruksområder, men samtidig kan den bli slakta for evne si til å forstyrre merksemda vår, eller forstyrre andre som irriterer seg over andre sin bruk i situasjonar dei skulle helst vore forutan. Denne masteroppgåva prøvar å kome med eit bidrag til studiar om smarttelefonbruk i eit medieerfaringsperspektiv. Med inspirasjon frå irritasjonen enkelte publikummarar uttrykkjer i kronikkar og lesarinnlegg om andre publikummarar sin bruk av smarttelefonen gjennom ein heil konsert, undersøkar denne oppgåva korleis unge vaksne frå alderen 20 til 26 år brukar smarttelefonen i ein konsertsamanheng. Ved å utføre deltakande observasjon av konsertane til Daniel Kvammen og Kjartan Lauritzen på USF Verftet i Bergen, etterfølgt av kvalitative intervju i etterkant av utvalde publikummarar, prøvar denne oppgåva å svare på korleis smarttelefonen er ein del av ei medieerfaring av å reise på konsert. I eit medieerfaringsperspektiv undersøker oppgåva korleis informantar brukar smarttelefonen på konsertane til Daniel Kvammen og Kjartan Lauritzen. Altså kva tar dei bilete og videoar av? Kvifor deler dei bileta og videoane med andre? Kva slags betydingar har det for informantane å dele konsertbileta og -videoane? Funna i analysen kan indikere at informantane ikkje er opptekne av å bruke smarttelefonen heile tida på konsertane til Daniel Kvammen og Kjartan Lauritzen ettersom det kan forstyrre ein tilstand av flow. Likevel brukte informantane smarttelefonen for å ta bilete og videoar av konsertane, og med tanke på at smarttelefonen kan verke å vere naturalisert i liva til informantane i den grad at dei ikkje tenkjer over bruken lengre, kan det tyde på at smarttelefonen er ein del av flowen. Naturaliseringa av smarttelefonen i liva til informantane kan også gjere det naturleg for dei å dele bileta og videoane med andre om at dei opplev noko utanom det vanlege i kvardagen, og dei informantane deler med er i hovudsak vener og familie. Å dele bilete og videoar frå konsertane kan ha ein verdi ved at det opnar opp for at dei kan halde ved like eksisterande forhold og pleie nære relasjonar som informantane ikkje ser så ofte i kvardagen.
Find us
Lars Hilles gate 30
5008 Bergen
Norway
Contact us
MediaFutures
Office@mediafutures.no
Responsible Editor:
Centre Director Prof. Dr. Christoph Trattner
Christoph.Trattner@uib.no
Copyright © University of Bergen 2024