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Undesired Effects
• Echo chambers
• Filter bubbles
• Popularity bias
• Unfairness
• Discrimination
• Lack of diversity
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Image source: https://medium.com/the-graph/popularity-vs-diversity-c5bc22c253ee, https://www.nbcnews.com/better/lifestyle/problem-social-media-reinforcement-bubbles-what-you-can-do-about-ncna1063896, https://theconversation.com/the-problem-of-living-inside-echo-chambers-
110486
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Can we recommend more 
diverse items in terms of 
popularity, which are still 
engaging, relevant and 
interesting to people?

Image source: https://medium.com/the-graph/popularity-vs-diversity-c5bc22c253ee, https://medium.com/the-graph/popularity-vs-diversity-c5bc22c253ee
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Research Track



Popularity Bias
● “Matthew Effect”
● “Rich Getting Richer”

Why is it bad?

● Decreases diversity of 
recommendation

● Can potentially lead to user 
dissatisfaction and lower 
engagement

● Can lead to provider withdrawal 
from the platform that makes the 
recommendation
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Solutions

🟢 Adjusting bias in 
training data
🔴 Not many 

techniques existing

Pre-Processing

🟢 Sophisticated algorithm 
tuning
🔴 Need to replace the 

recommendation model

In-Processing
🟢 Easily implements on 

top of existing model
🔴Works with biased 

recommendation

Post-Processing
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Post-Processing: Re-ranking
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Item 
Collection

Candidate 
generation Final list

Base recommender Re-ranker Output



Calibrated Popularity 
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(G1) - “Mainstream” lovers 
(G2) - Users with diverse 
preferences 
(G3) - “Niche” lovers

🔵 Very popular items
🟢 Mid-popular tems
🔴 Niche unpopular items



Preliminary Experiments
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🔵 Very popular items
🟢 Mid-popular tems
🔴 Niche unpopular items

Original user interest Poten/al recommenda/ons



Offline Testing
• Define set of 

metrics 
• Get datasets
• Testing against 

other algorithms
• Make sure the 

chosen strategy 
works well enough 
for later live testing
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Online A/B Testing

Academic ➡ Industry: 
Scalability is important!
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Assess user satisfaction and perception in 
real life scenario:
• Less biased setting
• Much greater user pool
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Online A/B Testing
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Click-through 
rate

User Retention

Behavioural 
change

Short-term effects

Long-term effects



Future Work

• More tests and 
experiments

• Qualitative analysis: user 
studies, questionnaires

• Algorithm modifications 
and improvements
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