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Question

 How many hours of videos do you
think is uploaded online, every minute?
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Many Choices

* 500+ hours of videos on YouTube, per min
» 300000+ posts on Instagram, per min
» 350000+ tweets on Twitter, per min

* Choice Overload: difficulty of choosing
among many options of media content.
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Recommendation & Personalization

 Recommender Systems: tools that can tackle choice overloud.

* They learn individual preferences and utilize Al algorithms to
automatically generate personalized suggestions for consumers.
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Al Algorithms
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Al Algorithms
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Benefits for Business

* Impact of recommendation:
* Increased revenue and profit
* Increased visit frequency
* Increased loyalty
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1 Million $ Prize!
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Undesired Effects eV

Home | Coronavirus | Climate | Video | World | UK | Business | Tech | Science | Stories |

Entertainment & Arts
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OPINION

Social media apps are 'deliberately’
addictive to users
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Why it’s time to ban algorithmic
recommendations for children

How do we encourage the good that ML and Al can provide while restraining potential harms? BB
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VA Researchers find evidence of i g

Echo chambers, rabbit bl}?S in recommender systems o

holes, and ideological /;
bias: How YouTube | /
recommends content to | /

real users
Megan A. Brown, Jonathan Nagler, James Bisbee, Angela Lai, and
Joshua A. Tucker -

Thursday, October 13, 2022
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EBU TECHNOLOGY & INNOVATION NEWS EVENTS PUBLICATIONS OURWORK  ABOUT @ LOGIN Q

OPERATING EUROVISION AND EURORADIO

BIAS AND MITIGATIONS IN RECOMMENDATIONS
FOR BBC SOUNDS
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e . MDN 2022 Online
BIAS AND MITIGATION IN RECOMMENDATIONS FOR BBC SOUNDS - SnEd Conference

ALGORITHMIC RECOMMENDATIONS

Graph-powered
recommendations
at the BBC

MDN 2022 Online
Conference

Recommendations are a ranking problem:

Recommended For You

- For every user, generate personalised s _ore:

for available items (programmes) Eg Building editorial
{ '.'z'mﬂ y
- Select the top n scores as recommended asersris I R V) , IR
items R Rl o e
' P " recommenders

Typically, use historical user behaviours and
item metadata as inputs to scoring algorithm

MDN Workshop 2021

France TV data
governance
for better
programme
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Undesired Effects of Recommendation

Tendency towards popular items
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Undesired Effects: Popularity Bias
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Rating: 9.2/10 Rating: 7.7/10 - Rating: 7.8/10 -
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Undesired Effects: Popularity Bias

boosted
movie recommendation
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Highly
popular
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2X MACHINA

PROVOKING THRILLER e

Rating: 9.2/10 Rating: 7.7/10 - Rating: 7.8/10 -
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Undesired Effects: Popularity Bias

boosted
Recommendation in

Twitter
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113.8M Followers 902.2K Followers 13.9K Followers
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Undesired Effects: Popularity Bias

D|ﬂ:erent \ 2 Raw Data
. ~ ee® MLP
Recommendatio = KNN
= N XGBoost
AlgOrltth 81 Il Random
s SVD++
s/ W Personal Average
== DeepFM
é 75 -
=
L% 70 - .
Gini as
indication of .

inequality

Source: Elahi, Mehdi, et al. "Investigating the impact of recommender systems on user-based and item-based
popularity bias." Information Processing & Management 568.5 (2021): 102655.
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Undesired Effects: Popularity Bias

Raw Data
MLP

KNN
XGBoost
Random
SVD++
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Gini Index
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60 -

55

50

Personal Average

Tweets data in

different Language

855

72.04

76.49 76.34

Spanish

Source: Elahi, Mehdi, et al. "Investigating the impact of recommender systems on user-based and item-based
popularity bias." Information Processing & Management 58.5 (2021): 102655.
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Responsible Recommendation

\/ Diversification
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Technical Approaches: Re-ranking

&~ @ O 8 https://www.youtube.com/watch?v=41JCpzvnn_0 o7 =
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But how does bitcoin actually
work?

3Blue1Brown &
14M views -« 5 years ago

e BITCOIN mo~ What is Bitcoin Mining? (In
MINING Plain English)
i 99Bitcoins
; A?t(ﬁ?‘- 3.3Mviews - 4 years ago

lBEBe o
B I T{@I N Bitcoin explajhe made
e simple
The Guardiaj

MADE ST, kel

How C cy ACTUALLY

works.

BITCOIINS

Translating Bitcoin into Plain English s
| 2 b-l 449 0:47 / 12:48 om & [E O -

Re-ranking
recommendation
output
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The Compl?
Crash Coursé

ner's Crypto

WHAT IS
BITCOIN?

1N PLAIN ENGLISH

99Bitcoins

The Complete Beginner's Crypto Crash Course

What is Bitcoin? Bitcoin Explained Simply for Dummies _" - |
99Bitcoins

159K Share =4+ Save
711K subscribers w Dﬁ g] F{>

. How the blockchain is cha
] money and business | Don...

\/i : TED @
| 4 = A 8N viewe « A veare ann

BITCOINS

) i Warren Buffett: Bitcoin Is An

cNBC

BUFFETT '™ Asset That Creates Nothing |...

SLAMS |
BITCOIN ypey CNBC @

' R 1.2M views - 4 years ago
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Technical Approaches: Re-ranking

Movie recs

Re-ranking
recommendation
output

THE GIRL ON THE TRAIN
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Advertisement: News Domain amedia
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This crisis shows us how an economy
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3 : Destroying America
: Well Before Covid-
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Advertisement: News Domain amedia

shot 1 shot 2

Key-frame
Detection
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visual - = visual
- features :

Feature
Fxtraction

#Watch (99%)
#Luxury (80%)
#Fashion (70%)

< movie, aggregated
visual features>

Feature
Aggregation
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Collaboration
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What Is Done: Publications

5+ Journal Publications
Including Elsevier IPM (Level 2)

0+ Conference & Workshop Publications
Including RecSys (Topmost conference

v
v
v

\/.
v

+ several demos, prototypes, & datasets
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Investigating the impact of recommender systems on user-based and
item-based popularity bias

Mehdi Elahi **, Danial Khosh Kholgh, Mohammad Sina Kiarostami °, Sorush Saghari,
Shiva Parsa Rad, Marko Tkal¢i¢ ¢

2 University of Bergen, Bergen, Norway
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ARTICLE INFO ABSTRACT

Keywords:
Recommender systems
Popularity bias

Recommender Systems are decision support tools that adopt advanced algorithms in order to
help users to find less-explored items that can be interesting for them. While recommender
systems may offer a range of attractive benefits, they may also intensify undesired effects, such

;;T:::Hzmo" as the Popularity Bias, where a few popular users/items get more popular and many unpopular
Social media users/items get more unpopular.

In this paper, we study the impact of different recommender algorithms on the popularity
bias in different application domains and recommendation scenarios. We have designed a
comprehensive evaluation methodology by considering two different recommendation scenarios,
i.e., the user-based scenario (e.g., recommending users to users to follow), and the item-based
scenario (e.g., recommending items to users to consume). We have used two large datasets,
Twitter and Movielens, and compared a wide range of classical and modern recommender
algorithms by considering a diverse range of metrics, such as PR-AUC, RCE, Gini index, and
Entropy Score.

The results have shown a substantial difference between different scenarios and different
recommendation domains. According to our observations, while the recommendation of users
to users may increase the popularity bias in the system, the recommendation of items to users
may indeed decrease it. Moreover, while we have measured a different level of popularity
bias in different languages (i.e., English, Spanish, Portuguese, and Japaneses), the above-noted
ph has been cc ly observed in all of these languages.

1. Introduction

The spread of recommender systems in the daily life of users is causing that more and more decisions are affected by recom-
mendations (Karimi, Jannach, & Jugovac, 2018; Pera & Ng, 2013). Recommender systems adopt a wide range of algorithms (Guo,
Tang, Ye, Li, & He, 2017; He et al., 2020) in order to learn from the user preferences, elicited in various forms (Elahi, Braunhofer,
Gurbanov, & Ricci, 2018), and to generate a small set of recommended items, which have high utility for a user, from a larger set
of items (the input dataset) (Margaris, Vassilakis, & Spiliotopoulos, 2020; Ricci, Rokach, & Shapira, 2015). The recommended set of

* Corresponding author.
E-mail addresses: Mehdi.elahi@uib.no (M. Elahi), dkhoshkholgh@acm.org (D.K. Kholgh), Mohammad.Kiarostami@student.oulu.fi (M.S. Kiarostami),
sorush9saghari@gmail.com (S. Saghari), sh.parsarad@gmail.com (S.P. Rad), marko.tkalcic@gmail.com (M. Tkal¢i€).
URLs: https://www.uib.no (M. Elahi), https://www.oulu.fi (M.S. Kiarostami), https://www.upr.si (M. Tkal&i€).
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recommender systems that promote healthy foods or suggestions for real estate (Yuan et al., 2013;
Starke and Trattner, 2021; Starke et al., 2021b).

A domain with high-stake decisions and a large potential choice set is university education. This
applies to choices one can make while attending higher education, such as what college major to
take and what electives to follow (Dwivedi and Roshni, 2017; Khoja and Shetty, 2017; Obeid et al.,
2018), as well as to the decision of attending a university or another higher education institution.
Whereas the former has been the topic of various recommender system and learning analytics
approaches [cf., Hasan et al. (2016)], universities are rarely featured in personalized approaches
(Rivera et al., 2018). This is arguably surprising, because a significant proportion of students
attending higher education in G20 countries is not native to those countries (OECD, 2013) -
even though most prospective students opt for institutions that are close to home, thus based on

022 | Volume 4 | Article 796268
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Public Outreach: 6 Seminars
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algorithms a burden or a solution? Dr. Christine by Using Weakly Supervised Learning. Assoc. eminar: Computational Psychology in o1 BoBtlartyHins i scommonder Seminar: Reflections of Ourselves - Mobile
Bauer, Assistant Professor at Utrecht Prof. Ozlem Ozgobek MediaFutures Seminar: Translating Recommender Systems, Marko - (P;ycholog-tcal I':s;tessfm:ntj with STyartphones'
i i : . . - Tkalgié, University of Primorska emens Stachl, Stanford Universi
University March 17 @ 1300 - 14:00 Educational Data into Meaningful Practic ! o S N
April 21 @ 13:00 - 14:00 (Slovenia).

Insights from the field of Learning Analyti
Mohammad Khalil.

25 November, 2021 @ 12:00 - 13:00

June 8 @ 11:00 - 12:00

] -

Please join the Center for Data Science (CEDAS, UiB) and
MediaFutures for an invited talk by Himan Abdollahpouri

from the Northwestern University, USA,
popularity bias in recommender syste

out the topic o
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Public Outreach: 2 International Workshops

& C' & sites.google.com/view/mors-workshop/organization?authuser=0 & @@ ® B W & R» % :

Home Callforpapers Organization Program Importantdates Q

2nd Workshop on Multi-Objective Recommender Systems
(MORS@RecSys2022)

Seattle, USA, 18th-23rd September 2022

e Spotify

90+ Participants

Himan Abdollahpouri Shaghayegh Sahebi Mehdi Elahi

Spotify SUNY University of Bergen

USA USA Norway

| RecSys 2022, & 2021
Masoud Mansoury Babak Loni Zahra Nazari Maria Dimakopoulou Topmost CO nfe rence Of the fleld
University of Amsterdam ING Group Spotify Spotify
Netherlands Netherlands USA USA
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for your attention
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Contact information:

Mehdi Elahi Mehdi.Elahi@uib.no
Christoph Trattner Christoph.Trattner@uib.no
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