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Figure 1: FootyVision multi-object tracking and top-down localisation in viewpoints with limited visual information.

Abstract
Football video content analysis is a rapidly evolving field aiming to
enrich the viewing experience of football matches. Current research
often focuses on specific tasks like player and/or ball detection,
tracking, and localisation in top-down views. Our study strives to
integrate these efforts into a comprehensive Multi-Object Tracking
(MOT) model capable of handling perspective transformations. Our
framework, FootyVision, employs a YOLOv7 backbone trained on
an extended player and ball dataset. The MOT module builds a
gallery and assigns identities via the Hungarian algorithm based on
feature embeddings, bounding box intersection over union, distance,
and velocity. A novel component of our model is the perspective
transformation module that leverages activation maps from the
YOLOv7 backbone to compute homographies using lines, intersec-
tion points, and ellipses. This method effectively adapts to dynamic
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and uncalibrated video data, even in viewpoints with limited vi-
sual information. In terms of performance, FootyVision sets new
benchmarks. The model achieves a mean average precision (mAP)
of 95.7% and an F1-score of 95.5% in object detection. For MOT, it
demonstrates robust capabilities, with an IDF1 score of approxi-
mately 93% on both ISSIA and SoccerNet datasets. For SoccerNet,
it reaches a MOTA of 94.04% and shows competitive results for
ISSIA. Additionally, FootyVision scores a HOTA(0) of 93.1% and
an overall HOTA of 72.16% for the SoccerNet dataset. Our ablation
study confirms the effectiveness of the selected tracking features
and identifies key attributes for further improvement. While the
model excels in maintaining track accuracy throughout the test-
ing dataset, we recognise the potential to enhance spatial-location
accuracy.
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1 Introduction
Football commands an immense global audience, exceeding five
billion enthusiasts, with its fan base spanning Europe, Latin Amer-
ica, the Middle East, and Africa [11]. This number is increasing
with growing enthusiasm for leagues that once received little at-
tention. For example, the FIFA Women’s World Cup has become
evermore popular, seeing its viewership numbers climb from 1.12
billion in 2019 to a staggering 2 billion in 2023 [21]. As viewership
grows, so does the demand for more in-depth analysis of strategic
components and player performance monitoring.

Innovations in Computer Vision (CV), Deep Learning (DL), and
Graphical Processing Units (GPUs) have significantly advanced
sports video content analysis, enhancing object detection, tracking,
and reidentification. Despite these technological strides, applying
DL to sports videos remains challenging due to the fast-paced na-
ture of team sports, where distortions and occlusions frequently
obscure player and ball detection and tracking. Football, in particu-
lar, presents additional challenges with its rapid player movements,
uniform appearance, and frequent occlusions, thus making the task
of Multi-Object Tracking (MOT) especially complex. Moreover, the
intricacy of DL models for discrete tasks often compromises their
performance and real-time processing capabilities. Consequently,
an integrated system that can accurately track football players and
the ball in near real-time, directly from raw video feeds, is not yet
available. This gap hinders the potential for real-time analysis and
event detection, which is essential for coaches, players, and avid
fans.

FootyVision aims to bridge the existing research gap by deliver-
ing a comprehensive all-in-one solution for tracking and localising
players and the ball in a top-down perspective, as demonstrated in
Figure 1. This figure exemplifies FootyVision’s application, show-
casing its ability to performwell under scenarios with limited visual
information. FootyVision utilises a custom-trained YOLOv7 net-
work to detect players and the ball while accommodating football
broadcast footage’s dynamic and fast-paced nature. The perspec-
tive transformation module repurposes activation maps from the
YOLOv7 to localise players in a top-down view and augment visu-
alisations in the image space. This innovative method allows for
extracting geometric information relevant to computing homogra-
phies even in viewpoints that otherwise lack relevant information
for the computations.

FootyVision’s tracking algorithm aims to overcome the limita-
tions of previous research by providing an in-depth analysis of
tracking features suitable to track identities which are similar in ap-
pearance. Our comprehensive ablation study dissects the tracking
algorithm to pinpoint the features critical for maintaining player
identities over successive frames. FootyVision’s analysis is further
distinguished by its application of CLEAR-MOT and Higher Or-
der Tracking Accuracy (HOTA) metrics. We reference the videos
used, which are publicly available, establishing a robust baseline
for future research endeavours. Our dual contribution of method-
ological innovation and detailed performance evaluation addresses
current challenges and sets a new standard for tracking accuracy in

football analytics. For player and ball object detection, FootyVision
achieves a mean average precision (mAP) of 95.7% and an F1-score
of 95.5%. Moreover, for tracking on the SoccerNet dataset, FootyVi-
sion attains a Multi-Object Tracking Accuracy (MOTA) of 94.04%, a
HOTA of 72.16%, and HOTA(0) of 93.1%. Consequently, FootyVision
establishes a competitive benchmark for subsequent research and
contributes new state-of-the-art results for football MOT.

2 Related Work
This section explores previous work related to player and ball de-
tection and tracking in football, the rectification of sports videos,
and all-in-one models for football video processing.

2.1 Player and Ball Detection and Tracking in
Football

Early work in this area consisted of detecting and tracking play-
ers only due to difficulties in tracking the ball caused by motion blur
and shape distortions. Many researchers approached the detection
of players via segmentation of the foreground from the background
via colour histograms [2, 7, 20, 25, 39, 49]. Segmentation of the play-
ers would then be undertaken via either blob detection [2, 12] or a
particle filter [7, 27]. Representing players as dense particle collec-
tions, which are shape-invariant, assists in mitigating track loss due
to occlusion, as described in [7]. Another method to overcome oc-
clusions was to track players through multiple camera viewpoints
[12, 27, 49]. However, multi-viewpoint tracking is only as reliable as
the feature descriptor for the region, and early efforts still suffered
from densely populated regions [49]. Other methods of tracking
involve graph-based methods, where blobs are represented as nodes
and edges showing the distance between the blobs [12]. Liu et al.
[25] implemented an unsupervised approach to tracking, where
two scans were made over the video to learn colour histograms
for masking the background and sampling players using a Boosted
Cascade of Haar features. Baysal et al. [1] employed Histogram
of Oriented Gradients (HOG) descriptors with a Support Vector
Machine (SVM) for tracking. This method involved sampling dense
particles on the field and analysing colour and motion for player
localisation.

More recent developments in Convolution Neural Networks
(CNNs) have allowed for learning feature maps at various scales,
meaning smaller objects can be detected, enabling detection of both
player and ball [13, 23, 28, 29]. You Only Look Once v3 (YOLOv3)
[31] has provided state-of-the-art results for both player and ball
detection in Naik et al. [28, 29]. Naik et al. [29] combined YOLOv3
with the Simple Online Realtime Tracking (SORT) [4] algorithm
to achieve high-accuracy tracking, which coped well with partial
occlusions. Garnier et al. [13] implemented a Single Shot Multi-
Box Detector (SSD) with feature embeddings and reinforcement
learning to provide robust tracking. Linke et al.’s [24] exploration
into the validity of TRACAB’s optical tracking systems underscores
the evolution of tracking accuracy, particularly highlighting the
Gen5 model’s superiority in providing reliable spatio-temporal data.

Other literature in football player tracking and analytics reflects
on utility. Vidal-Codina et al.’s [44] study on automatic event detec-
tion and Sanford et al.’s [33] research on group activity detection
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demonstrate the advanced use of tracking data. These works high-
light the application of tracking systems for in-depth analysis of
in-game events and team dynamics, respectively.

2.2 Rectification of Sports Images
Image rectification is the projection of images onto a common

plane. Traditionally, the relationship between two image planes is
mapped by an isometric transformation performed by the homogra-
phy matrix 𝐻 . To achieve this, at least four image correspondences
must be matched. Hayet et al. [17, 18] mapped 𝐻 for both image-to-
template and image-to-image, where lines and ellipses were used
to compute the homography. In Hayet et al. [18], search areas were
minimised by re-projecting the last estimate into the current frame,
leading to real-time inference. Dubrofsky et al. [10] extended the
Direct Linear Transform (DLT) algorithm to accommodate for both
points and lines, verifying the results on ice-hockey images. For ice
hockey rink rectification, Gupta et al. [14] implemented Dubrofsky
et al.’s extended DLT algorithm. Here, ellipses were detected to
define new keypoints via intersections and polars, offering a more
robust method of rectifying ice-hockey images.

Recent applications of sports pitch rectification are mainly based
aroundDL solutionswithmultitask learning [30, 42], self-supervised
learning [37] and spatial transformers [36]. These networks can
learn more complex patterns within data but at the cost of pro-
cessing power. Some of these works have aimed to provide an
end-to-end solution for camera pose estimation, estimating the
camera intrinsic 𝐾 [𝑅 |𝑇 ] via homographies [6, 36]. CNNs, in partic-
ular, U-Net, have proved to be reliable feature extractors for lines
and area-based segmenters in Citraro et al. [6] and Sha el al.[36],
respectively. Nie et al. [30] estimated keypoints via an encoder net-
work to compute 𝐻 . In the scenario where there were not enough
keypoints available to satisfy the computation of 𝐻 , a two-channel
dense feature regressor increased keypoints.

Other recent proposals have opted for computationally less costly
methods of localising players in a top-down view. For instance, Stein
et al. [39] preprocessed a panoramic view of the football pitch and
mapped frames and homographies. While Scott el al. [34] aligned
drone images with Iterative Closest Point (ICP) fitting, bypassing
the need for computing homographies.

2.3 All-in-one Models
Most research commits to solving independent tasks without

encapsulating each task into an all-in-one model. Theiner et al. [43]
addressed the problem by combining CenterTrack [50] to detect
and track players, a two Generative Adversarial Network (GAN)
solution for camera pose estimation, TransNet [38] for viewpoint
classification, and colour histogram and DBScan for team assign-
ment. Indeed, while the solution provided state-of-the-art results
utilising some of the most successful DL models for each task, per-
formance regarding inference times and hardware was not recorded.
Garner and Gregoir’s [13] model utilised a Single Shot Multibox
Detector (SSD) for player and ball detection with a reidentification
feature embedding for tracking. The homography transformation
was computed by keypoint masks from Effeicient-Netb3 on a feature
pyramid network ready for processing by the DLT algorithm once
matched to templates. In a situation when keypoints were sparse, a
Deep Homography CNN based on ResNet-18 computed 𝐻 . Stein et
al. [39] also processed football footage to provide in-game analysis

with impressive speeds on consumer-level hardware. Instead of
using ML approaches to lay the groundwork for their analysis, they
used background subtraction with edge and colour-based detection
for player tracking. Moreover, a two-step homography transforma-
tion registered the current view into a pre-computed panoramic
image of the pitch, which was then mapped to a pitch template.

Other research has developed all-in-one models for different
use-case scenarios. For instance, Honda et al. [19] created a model
to predict pass receivers using LSTM and transformer encoders,
with YOLOv5 for player detection and ICP registration for frame
mapping. In a different approach, Scott et al. [34] developed a drone
and GNSS-based model for an aerial perspective, using YOLOv5 for
detection. Though it lowers image processing needs, it struggles
with adaptability and cost, especially for small-scale use and diverse
camera movements. Our work contributes to the all-in-one models,
encompassing MOT and perspective transformations.

3 Theoretical Framework
FootyVision is an all-in-one model for MOT and perspective trans-
formations for uncalibrated broadcast video. FootyVision consists
of three main modules:

• YOLOv7 network for player and ball detection
• Tracking module to assign identities to the detections
• Perspective transformation module to compute homogra-
phies for top-down localisation of tracks

Figure 2 provides an overview of the system architecture. Firstly,
an uncalibrated video source is streamed into the YOLOv7 net-
work, where detections undergo Non-Maxima Suppression (NMS)
before being forwarded to the tracking module. Feature maps are
extracted from activations in early layers of the YOLOv7 network.
These feature maps provide substantial information regarding the
geometric layout of the football pitch, which is relevant for com-
puting the homographies through lines, intersections, and ellipses.
The output from the model is tracked player and ball identities with
their respective top-down view localisations suitable for strategic
analysis.

3.1 MOT
MOT of football players and the ball is a challenging task due

to the similar appearance of players, motion blur, and shape dis-
tortions. Our innovative all-in-one model achieves state-of-the-art
MOT while repurposing information from the object detection net-
work to remove bystander detections and compute perspective
transformations. Our tracking algorithm consists of YOLOv7 object
detection for players and the ball, team detection, feature embed-
ding, and identity assignment with the Hungarian algorithm. The
following subsections will explain each task in detail.

3.1.1 YOLOv7 Object Detection When the FootyVision was devel-
oped, YOLOv7 was the most recent addition to the YOLO family.
In this research, we trained YOLOv7, from Wang et al. [46], on a
custom dataset. YOLOv7 is designed for fast and accurate detection,
particularly of smaller objects, making it well-suited for tasks like
identifying a ball in football broadcast videos. The implementation
of focal loss in its cost function enables YOLOv7 to detect small,
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Figure 2: FootyVision, based on a YOLOv7 backbone, outputs bounding boxes to a tracking module for identity assignment
from an incrementally constructed gallery. It employs a unique approach using intermittent activation maps for detecting
lines, intersections, and ellipses, facilitating homography computation to localise players and the ball in a top-down viewpoint.

hard-to-see objects effectively. Additionally, the updated input reso-
lution of 640x640 enhances its capability to identify smaller objects,
increasing detection probability.

3.1.2 Removing Bystanders Naik et al. [29] proposed removing
bystanders by classifying the background. We approach the prob-
lem by extracting an activation mask from the YOLOv7 network to
remove bystanders classified as players. This methodology repur-
poses already processed information while simplifying the YOLOv7
training to detect just players and the ball. For our model, we do not
regard linesmen as bystanders because they are integral members
of the game.

3.1.3 Team Assignment For each frame, we extract a mask in Hue
Saturation and Value (HSV) space and sample colours within a
range that corresponds to the player’s shirt colours. We use the
bounding boxes of the player class from YOLOv7 to extract the
Region of Interest (ROIs) of the three colour masks and assign a
team based on which mask contains the maximum count of white
pixels. The outcome is each bounding box being assigned to a team
or classified as the referee.

3.1.4 Feature Embeddings Reidentification aims to assign iden-
tities to objects to be identified through consecutive frames and
multiple camera angles. Currently, to the author’s knowledge, there
are no readily available datasets for reidentification of football play-
ers, therefore, we use Wieczorek et al.’s [47] model trained on the
Market-1501 dataset. We first instantiate a gallery based on the
feature embeddings, and then we take the weighted average of the
feature vectors from a preset number of frames to provide historical
context to the feature embedding. When a track is lost, we keep it
alive before “flushing” tracks that have been inactive for a certain
period of time.

3.1.5 Identity Assignment The Hungarian algorithm solves the
linear assignment problem by yielding the minimal cost from the
cost matrix 𝐶 . In our research, the cost matrix is a product of the
cosine similarity of the feature embedding and gallery, bounding

box IoU, bounding box distance, and velocity.

𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos (𝜃 ) = 𝐴 · 𝐵
| |𝐴𝐵 | | =

∑𝑛
𝑖=1𝐴𝑖𝐵𝑖√︃∑𝑛

𝑖=1𝐴
2
𝑖

√︃∑𝑛
𝑖=1 𝐵

2
𝑖

(1)

Equation 1 outputs a similarity matrix of size m x n, where m is
the number of current detections and n is the number of identities
stored in the gallery.

𝐽 (𝐴, 𝐵) = |𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 | (2)

Equation 2 is the Jaccard Index, otherwise known as IoU, which is
computed between the current bounding boxes and those of the
previous iteration collected from the respective instances of the
player class.

𝐶 = 𝜆feat (1 − 𝐽 ) + 𝜆iou cos (𝜃 ) + 𝜆dist ( |𝑐𝑥 − 𝑐𝑦 |)2 + 𝜆vel𝑉 (3)

We combine the two together while inverting the 𝐽 matrix to meet
the expectations of the Hungarian algorithm. Both distance, ( |𝑐𝑥 −
𝑐𝑦 |)2, and velocity,𝑉 , are normalised before multiplying with their
respective lambda weights. The lambda weights were identified
during an ablation study outlined in Section 4.6. The Hungarian
algorithm yields the corresponding identities that can be assigned
to each bounding box, and the corresponding class is updated.

3.2 From Activation Maps to Homographies
An all-in-one model needs to localise player positions in a top-

down view to assist in strategically analysing team formations.
We compute the homography matrix by extracting lines and el-
lipses from the activation maps. Computing homographies is a
well-documented procedure, so we refer the readers to Hartley &
Zisserman [16] for comprehensive explanations. Our work uses the
extended DLT algorithm documented in Dubrofsky et al. [10].

3.2.1 Line and Ellipse Detection To suit the dynamic nature of
broadcast football videos we have employed two different process-
ing routes based on the viewpoint of the image.We first denormalise
a feature map from layer one before removing background noise
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(a) Additional lines with two detected vertical lines. (b) Additional lines with one detected vertical line.

Figure 3: Extending points and lines via ellipse detection and sampling.When two vertical lines are detected, a line is constructed
connecting these lines’ vanishing point to the ellipse’s furthest horizontal point (3a). When no other vertical line is present, the
ellipse is sampled, and a line is constructed from the intersection of the back line to the outermost horizontal ellipse point (3b).

from another activation map that masks the playing field. Depend-
ing on the angle and location of the center line, the viewpoint is
classified and processed accordingly:

• Side Viewpoint: we split lines into horizontal and verticle
clusters via RANSAC with a cost function measuring the
distance from computed vanishing points (VP). Lines are
then clustered using DBSCAN before fitting a line to each
cluster for the best approximation.

• Central Viewpoint: First, an activation map which clearly
depicts the central ellipse in the field is extracted and fitted
with an ellipse using least squares, documented in Halir &
Flusser [15]. When two verticle lines are present, the van-
ishing points are computed to be the first component of a
line segment (see Figure 3a). While the outermost point of
the ellipse is set as the second component. In the case of
one vertical line, points are sampled around the ellipse cir-
cumference and an intersection is computed with the back
horizontal line. This intersection, along with the outermost
point of the ellipse, defines the line segment. A further two
horizontal lines are added perpendicular to the verticle center
line, which cross through the center top and center bottom
points of the ellipse (see Figure3b).

3.2.2 Line and Intersection Matching The detected lines and inter-
sections are matched to a database of templates with ground truth
labels of the correspondences. A similarity matrix using Euclidean
distance is computed for templates, selecting the one with the least
distance. The Hungarian Algorithm assigns identities to each line
using this similarity matrix as the cost matrix 𝐶 . We stack the line
and intersection matches into matrix 𝐴 (as defined in Dubrofsky et
al. [10]) and solve for matrix 𝐻 via Singular Value Decomposition
(SVD). With the detections and correspondences, it is possible to
compute the 𝐻 matrix with intersection points and lines.

Video Title Time Stamp

2016 Leicester 0-0 Arsenal 07:42-09:32
2016 Leicester 3-0 Watford 46:22-47:24
2016 Leicester 0-1 West Bromwich 11:49-12:39
2016 Liverpool 0-0 Manchester United 45:52-47:26
2016 Arsenal 3-0 Chelsea 48:59-49:21
2016 Hull City 1-0 Arsenal 12:57-13:21
2016 Leicester 4-2 Manchester City 51:07-59:57

Table 1: Training Data from SoccerNet Dataset.

4 Experiments
This section details the training of YOLOv7 and evaluation methods
for the tracking algorithm, with Section 4.6 offering a comprehen-
sive ablation study on the individual components’ impact on overall
performance.

4.1 Datasets
We now outline the datasets used to train the YOLOv7 network

and specify test datasets used for evaluating the MOT algorithm.

4.1.1 Object Detection The training of our player and ball YOLOv7
object detector is based on two datasets: ISSIA [9] and SoccerNet [8].
The ISSIA dataset consists of 15707 annotated images of players and
balls. Frames containing just the goalkeeper were reduced, as there
were already biases in the training data due to the player-ball ratio
on the football pitch at any given time. The ISSIA dataset was re-
synchronised with its labels due to a noticeable delay in tracks. We
extended the dataset further with additional labelled images from
the SoccerNet dataset annotated using Computer Vision Annotation
Tool (CVAT) [35] (see Table 1 for details).

4.1.2 Tracking The tracking algorithmwas tested on three datasets
consisting of 1000 frames each (Table 3). All testing data consisted of
previously unseen footage to evaluate how the model generalises to
varying football video data. The chosen SoccerNet sequence offers
closer player views similar in size to those in the ISSIA dataset but
also includes varied viewpoints and camera movements, leading to
more challenging sequences with motion blur and scale variations.
In contrast, the ISSIA sequence uses a static camera, simplifying the
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Method Dataset Pr(%)↑ Re(%)↑ F1-Score(%)↑ mAP(%)↑ Acc(%)↑ FPS ↑
DLBT [22] ISSIA - Ball 93.25 73.25 - - 87.45 10
FootAndBall [23] ISSIA - Player - - - 92.1 - -
Small-Soccer Player [32] ISSIA - Player - - - 97.3 - -
YOLOv3-SORT [29] ISSIA - Player and Ball 96.57 93.3 91.6 93.47 - 23.7
FootyVision (Proposed) ISSIA, SoccerNet - Player and Ball 97.2 94.0 95.5 95.7 - 30.1
Table 2: Object Detection Metrics Compared with State-of-the-Art Models. Table adapted from from Naik et al. [29].

task but offering lower video quality compared to the other datasets.
We also tested on our industry partner, NRK’s, dataset featuring a
Norwegian football team with a wider angle and dynamic camera.
The video clips were selected based on the inherent challenges they
presented. For example, SoccerNet and NRK clips contained full
and partial occlusions, varying camera angles and perspectives, a
degree of motion blur, and distortions in players and the ball. The
ISSIA clip was selected based on deducing information from Naik
et al. [28], as the specific clip was not explicitly stated.

Dataset Video Title Time
Stamp

Frames

SoccerNet 2016 Manchester United 4-1 Leicester 59:57 1000
ISSIA Film Roll 1 00:00 1000
NRK Valerenga vs Rosenborg 12:41 1000

Table 3: Datasets used with respective times and frames.

4.2 Training YOLOv7
YOLOv7 was trained on our extended dataset with a learning

rate of 0.001. The model used PyTorch on a desktop computer with
an NVIDIA A5000 Graphics card, AMD Ryzen 9 5950x 16-Core
Processor and 64GB RAM. We employed several preprocessing
techniques to enhance the training process and mitigate overfit-
ting on the training dataset, including HSV augmentation, random
translations, random scaling, and random horizontal flipping. These
techniques enable the model to learn more robust features and gen-
eralise better to new data by introducing diversity and variability
into the training samples.

4.3 Metrics
We use established metrics such as precision, recall, F1 score, and

IoU to evaluate object detection performance. Our MOT evaluation
utilises established metrics, such as CLEAR-MOT [3] and HOTA
[26]. We refer readers to these papers for an in-depth description
of each metric.

4.4 Implementation Details
Inference was performed on an MSI laptop with a 12th Gen

Intel I9-12900HK 2.90Ghz CPU, NVIDIA GeForce RTX 3080 Ti GPU,
and 32GB Ram. The DNNs were frozen before editing the network
outputs with the ONNX library to access intermediate activation
maps. Inference was carried out using a TensorRT Engine with
Cuda 11.2 and CUDNN 8.2 acceleration. The model was written
in Python with libraries Tensorflow 2.8, Numpy, Sklearn, SkImage,
and OpenCV 4.5.2 with GPU support.

4.5 Evaluation
Table 2 compares our FootyVision model against other state-of-

the-art football object detection models. Specifically, FootyVision
achieves a precision (Pr) of 97.2%, recall (Re) of 94%, and F1-Score of

Figure 4: HOTA Evaluation.

95.5%, indicating superior performance in identifying players and
the ball. While our mean Average Precision (mAP) score of 95.7%
is highly competitive, it is important to note that Hurault & Haro’s
[32] model, which does not detect balls, achieves a slightly higher
mAP of 97.3%. However, we should contextualise this comparison
by recognising that their model does not include ball detection,
a critical aspect of our evaluation. In terms of computational effi-
ciency, our optimisation of the YOLOv7 model through TensorRT
and GPU acceleration has significantly improved processing speed,
achieving 30.1 frames per second (fps) for player and ball detection.

Regarding the performance of the tracking algorithm, FootyVi-
sion’s performance is comparable and, in some cases, optimal com-
pared to previous research. Considering Table 4, FootyVision gen-
erally outperforms other models in precision, recall, and IDF1. Con-
sidering MOTA, FootyVision outperforms on the SoccerNet dataset,
achieves good results for the NRK dataset, and slightly underper-
forms with respect to ISSIA dataset compared to Naik et al. [28].
Concerning Multi-Object Tracking Precision (MOTP), FootyVision
generally underperforms compared with documented results from
Naik et al. The results further indicate that FootyVisions major
drawback is the accuracy of the localisation of the bounding boxes
when tracked across frames. While FootyVision demonstrates confi-
dence in tracking and identity retention across frames, as indicated
by its IDF1 score, its performance on the ISSIA dataset is notably
lower regarding MOTA. This could be attributed to ISSIA’s lower
video quality, affecting spatial localisation and overall accuracy.
However, despite these limitations, the high IDF1 score for ISSIA
implies effective tracking. In contrast, the model shows improved
results in the SoccerNet dataset, suggesting better generalisation
and object detection in higher-quality videos.

The analysis of FootyVision’s tracking using HOTA metrics, as
shown in Table 5, indicates strong performance on the SoccerNet
dataset. The high HOTA(0) across tests suggests effective track
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Method Dataset Pr(%)↑ Re(%)↑ IDF1(%)↑ IDR(%)↑ IDP(%)↑ MOTA(%)↑ MOTP(%)↑ MODA(%)↑ FPS ↑
DLBT [22] ISSIA 93.25 73.25 - - - - - - 10
Small-Soccer Player [32] ISSIA - - - - - 97.3 - - -

YOLOv3-SORT [29]
SoccerNet
ISSIA

90.1
93.2

89.2
91.7

85.8
87.3 -- --

87.2
93.7

83.1
88.6 --

11.3
8.7

FootyVision (Proposed)
SoccerNet
NRK
ISSIA

97.287
95.9
97.857

96.784
96.143
90.301

93.45
89.335
93.927

93.208
89.448
90.301

93.693
89.222
97.857

94.04
91.952
88.323

78.972
70.2
69.84

94.085
92.033
88.323

9.7
9.65
9.52

Table 4: Multi-Object Tracking Metrics Compared with State-of-the-Art Models. Table adapted from Naik et al. [29].

Dataset HOTA(%)↑ DetA(%)↑ AssA(%)↑ DetRe(%)↑ DetPr(%)↑ AssRe(%)↑ AssPr(%)↑ LocA(%)↑ HOTA(0)(%)↑ LocA(0)(%)↑ IDSW ↓
SoccerNet 72.168 73.169 71.27 78.137 78.543 77.225 78.171 81.749 93.108 78.677 6
ISSIA 64.096 61.294 67.361 64.908 70.339 71.419 73.417 75.328 94.671 69.397 0
NRK 62.078 63.602 60.703 68.634 68.461 63.691 71.553 75.318 89.909 70.048 14

Table 5: HOTA Metrics with configuration {𝜆feat = 0.25, 𝜆dist = 0.2, 𝜆iou = 0.3, 𝜆vel = 0.25} for SoccerNet {𝜆feat = 0.233, 𝜆dist =
0.233, 𝜆iou = 0.3, 𝜆vel = 0.233} for ISSIA, and {𝜆feat = 0.266, 𝜆dist = 0.266, 𝜆iou = 0.266, 𝜆vel = 0.2} for NRK.

(a) HOTA vs IDSW. (b) HOTA vs AssA. (c) AssPr vs AssRe.

Figure 5: Scatter plots considering performance with respect to tracking lambdas.

maintenance over frames. While localisation isn’t pixel-perfect,
as evidenced by the decent but improvable localisation accuracy
LocA(0), the tracker consistently identifies correct object regions.
Figure 4 illustrates performance metrics, such as Detection Accu-
racy (DetA, 0.73), Association Accuracy (AssA, 0.71), Detection
Recall (DetRe, 0.78), Detection Precision (DetPr, 0.79), Association
Recall (AssRe, 0.77), Association Precision (AssPr, 0.78), and Local-
isation Accuracy (LocA, 0.82) over varying alpha thresholds. As
alpha becomes more stringent, a notable decline in performance
scores indicates a significant trade-off between the precision of
localisation and the overall tracking accuracy. Specifically, the de-
crease in the HOTA score to lower values as alpha tightens reflects
the challenge of maintaining high accuracy when stricter localisa-
tion criteria are applied. This trend is consistent across evaluation
metrics, confirming the impact of localisation precision on the
tracking performance.

Considering Table 5 SoccerNet and NRK results, DetA surpasses
AssA, indicating better detection accuracy than association. Con-
versely, ISSIA excels in association, suggesting effective track main-
tenance over time despite spatial localisation issues. The NRK
dataset’s lower AssRe and higher identity switch (IDSW) imply
challenges in maintaining track consistency, unlike ISSIA, which
shows no identity switches due to fewer tracks and static camera

footage. SoccerNet, with six IDSW in an occlusion-heavy sequence,
reveals the algorithm’s partial efficiency during occlusions while
highlighting limitations under complex conditions.

Both CLEAR-MOT and HOTA metics have indicated that while
FootyVision’s tracking algorithm is successful inmaintaining tracks,
it struggles with spatial accuracy of the bounding boxes. The HOTA
metrics give further insights into the nuances of the tracking algo-
rithm, revealing a high-level capability to maintain track identity
even when the localisation precision is not stringent. The high
HOTA scores across the datasets imply robustness in track identity
maintenance, which is essential for applications where understand-
ing the flow and pattern of play is more critical than the exact
spatial accuracy. However, the lower LocA scores highlight the
need to refine the algorithm’s spatial precision.

4.6 Ablation Study
Our ablation study aimed to analyse and validate the impact of

varying the lambda weights in the cost matrix construction on iden-
tity assignments by the Hungarian algorithm. By systematically
adjusting the weights, we employed the leave-one-out method to
better understand each component’s role in the algorithm’s perfor-
mance. Considering Figure 5a, a balance of all components tends
to reduce IDSW except for 𝜆𝑑𝑖𝑠𝑡 , which consistently yields a low
IDSW even when 𝜆𝑓 𝑒𝑎𝑡 = 0.5. However, when 𝜆𝑑𝑖𝑠𝑡 is deactivated,
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(a) Frame 922. (b) Frame 928. (c) Frame 940. (d) Frame 952.

Figure 6: SoccerNet Dataset: Tracking through full and partial occlusions. “Player_44” retains his identity through a partial
occlusion in Figure 6b. Whereas, “Player_16” and “Player_51” switch identities after a full occlusion in Figure 6c.

there are eight identity switches, showing the other metrics col-
lectively compensate to maintain a low incidence of ID switches.
Similarly, 𝜆𝑣𝑒𝑙 follows the same pattern, although it displays an
optimal window in the lower ranges.

We observed a positive correlation between HOTA and AssA,
as depicted in Figure 5b. The most effective weight combination
for performance was {𝜆feat = 0.3, 𝜆dist = 0.3, 𝜆iou = 0.3, 𝜆vel = 0.1},
which balanced the attributes with minimal emphasis on veloc-
ity. This balance was crucial as high-velocity weight reduced the
IDSW but impacted HOTA negatively. Other notable combina-
tions with lower IDSWs supported the importance of balanced
weights across all components for optimal tracking performance.
The stepped appearance in AssPr vs AssRe (Figure 5c) displays a
trade-off concerning both these measures. The trade-off between
precision and recall is often the case in tracking algorithms. The
outlier, {𝜆feat = 0.166, 𝜆dist = 0.166, 𝜆iou = 0.5, 𝜆vel = 0.166}, is
consistent over all metrics in previous visualisations, indicating the
lowest ranking configuration has a higher precision at the cost of
recall. In contrast, the lambda configurations that perform well in
HOTA, AssA, and IDFW tend to have higher recall than precision.

In conclusion, our ablation study confirmed the importance of
each tracking component and the balance of lambda weights in
the cost matrix for identity assignment with the Hungarian algo-
rithm. Optimal adjustment of these weights is crucial for balanced
component interaction and improved tracking.

5 Discussion
To derive deeper insights, we delve into the evaluation and ablation
study results of FootyVision, uncovering its strengths and weak-
nesses. By cross-validating these findings with qualitative data, we
aim to enrich our discussion and present a more nuanced under-
standing. Additionally, We examine the perspective transformation
results, suggesting improvements for future research.

Our evaluation shows that training on SoccerNet and ISSIA
datasets yielded improved object detection results compared to pre-
vious research. Considering Naik et al.’s [28] evaluation, their model
underperformed on the SoccerNet dataset, whereas it had state-of-
the-art performance on the ISSIA dataset. In contrast, FootyVisions
tracking algorithm outperformed current state-of-the-art for Soccer-
Net datasets and retrieved competitive results for the ISSIA dataset.
This shows that training YOLOv7 on a dataset with more variety
than ISSIA helps it generalise to more varied data while maintaining

satisfactory results. FootyVisions main limitation was maintaining
spatial localisation throughout the lifespan of the track. Consider-
ing tracking of football players, maintaining good association and
localisation is imperative to identify and localise players accurately
in a top-down viewpoint. Therefore, it is necessary to improve these
points before considering using such a model for real-time applica-
tions. The results indicate that performance varies across different
datasets, particularly occlusion scenarios. For instance, the NRK
dataset exhibited a higher incidence of IDSW than SoccerNet. This
phenomenon suggests that factors such as camera proximity and
the resulting angle relative to the field impact identity maintenance;
the wider camera angle in NRK footage, which presents players
on a smaller scale, likely contributes to these challenges. Our abla-
tion study revealed that the feature parameter 𝜆𝑓 𝑒𝑎𝑡 significantly
influences tracking effectiveness, especially when integrated with
additional features. Tighter camera shots provide more prominent
player segmentations, yielding richer visual data for the feature vec-
tors. The diversity of features embedded in these vectors is crucial,
as smaller player representations in the NRK dataset limit feature
differentiation, leading to potential confusion during occlusions.
Our algorithm’s reliance on a combination of IOU, centroid dis-
tance, feature embeddings, and velocity attributes underscores the
complexity of player tracking.

The ablation study highlights the importance of integrating at-
tributes like IOU and feature embeddings for effective tracking.
Over-reliance on isolated features leads to errors. Figure 6 illus-
trates an identity switch during full occlusion and identity recovery
in partial occlusion. The algorithm’s struggle with full occlusions
is linked to high IoU and minimal spatial or feature distance be-
tween detections. To enhance identity tracking, especially through
occlusions, we suggest using transfer learning with a reidentifi-
cation network and football-specific datasets for more distinctive
feature embeddings. Alternatively, implement a tracking system
across multiple camera angles. Both approaches would improve
robustness and reliability in MOT under challenging conditions.

The effectiveness of utilising activation maps from various layers
to provide effective masks for lines and ellipses needed to compute
the homography matrix is evident in the homography transforma-
tions shown in Figure 7. While the proposed methodology works
well in challenging viewpoints, such as central views with limited
information, there are still discrepancies in transformations due
to lens barrel distortion, which can be seen in wider viewpoints
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(a) Central Field Close Homography with Extended Line
and Intersections from Ellipse Detection.

(b) Left Field Wide View Homography from Lines and
Intersection.

Figure 7: Frames with Corresponding Inverse Homography Transformations from Lines, Intersections, and Ellipses.

(Figure 7b). Correcting lens distortion before applying the Hough
transform would have improved perspective accuracy.

Output from FootyVision can provide rich insights from the
football match. In particular, spatial-temporal data can provide
information regarding the strategic elements of the game. For ex-
ample, Wu et al. [48] used spatio-temporal data to gain deeper
insights into team formations, assisting the user in their under-
standing of current game states. Moreover, rule-based systems built
upon spatio-temporal data can infer in-game events. Tanaka-Ishii
et al. [40, 41], Voelz et al. [45], and Binsted et al. [5] all showed how
using these event systems can lay the groundwork for automated
commentary. In our own research, FootyVision’s data is the basis
for interactive commentary in AiCommentator (in press, 2024).

6 Limitations
Comparing our work with others is challenging due to the incon-
sistent documentation in previous studies. We address this by de-
tailing specific open-source video segments while implementing
CLEAR-MOT and HOTA metrics for clearer benchmarking. While
FootyVision provides a rich dataset that can infer events and strate-
gic elements, its main drawback is its inability to process in real
time and track through prolonged periods of full occlusion reliably.
Therefore, post-processing is necessary to correct identity switches,
connect fragmented tracks, and label the tracks. Future research
should look to optimise tracking algorithms through multiple video
streams to retain track identities while improving the speed of
computation. We suggest using DL models and optical character
recognition to detect shirt numbers and link the associated iden-
tities automatically. We plan to correct barrel distortion in future
iterations to enhance the accuracy of perspective transformations.

7 Conclusion and Future Work
We have introduced FootyVision, an innovative approach to MOT,
localisation, and augmentation in football videos. Utilising a YOLOv7
backbone for object detection, FootyVision excels in detecting play-
ers and the ball in football broadcast video while surpassing accu-
racy with MOT. Qualitative results show that FootyVision’s novel
perspective transformation module copes well with viewpoints
that contain limited visual information by extracting geometric
features from YOLOv7 activation maps. Our extensive quantitative
evaluation across ISSIA and SoccerNet datasets demonstrates the

robustness and adaptability of FootyVision while setting a com-
prehensive baseline for future research in MOT of players and
the ball in football video. An ablation study analyses the effect of
each tracking feature with respect to the challenges of tracking
identities with high similarity. We find a balanced contribution of
all features achieves state-of-the-art MOT results. Despite these
advancements, challenges in tracking accuracy and localisation
still remain prevalent during periods of high occlusion. Address-
ing these challenges forms the primary avenue for future research.
FootyVision represents a substantial advancement in sports analyt-
ics, offering insights and capabilities to analyse and enjoy football.
The system not only sets a new standard in accuracy but also lays
the groundwork for future innovations in the field. Our current
work AiCommentator (in press, 2024), has shown the plausibility
of utilising FootyVision for interactive platforms. We look forward
to continuing to improve FootyVision while exploring the diverse
applications and developments possible from this research.
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