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ABSTRACT
The recent advancements in Generative Adversarial Networks
(GANs) and the emergence of Diffusion models have significantly
streamlined the production of highly realistic and widely accessible
synthetic content. As a result, there is a pressing need for effective
general purpose detection mechanisms to mitigate the potential
risks posed by deepfakes. In this paper, we explore the effectiveness
of pre-trained vision-language models (VLMs) when paired with
recent adaptation methods for universal deepfake detection. Follow-
ing previous studies in this domain, we employ only a single dataset
(ProGAN) in order to adapt CLIP for deepfake detection. However,
in contrast to prior research, which rely solely on the visual part
of CLIP while ignoring its textual component, our analysis reveals
that retaining the text part is crucial. Consequently, the simple and
lightweight Prompt Tuning based adaptation strategy that we em-
ploy outperforms the previous SOTA approach by 5.01% mAP and
6.61% accuracy while utilizing less than one third of the training
data (200k images as compared to 720k). To assess the real-world
applicability of our proposed models, we conduct a comprehensive
evaluation across various scenarios. This involves rigorous testing
on images sourced from 21 distinct datasets, including those gener-
ated by GANs-based, Diffusion-based and Commercial tools. Code
and pre-trained models will be made available: https://github.com/
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1 INTRODUCTION
The internet is now flooded with synthetic images generated by
deep neural networks, commonly known as "Deepfakes," thanks to
technologies like Generative Adversarial Networks (GANs) [14, 21]
and Denoising Diffusion Probabilistic Models (DDPMs) [39, 44].
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These powerful tools have become accessible to a wider audience
due to open-source availability.

In response to this, researchers have been actively proposing
novel methods for automatic detection of synthetic content [5, 7,
32, 45, 47]. However, a major issue with existing deepfake detection
models is their limited ability to generalize across different data
distributions [5, 29, 32]. Deepfake detection is typically posed as a
supervised learning problem, where a deep neural network model
is trained to differentiate between authentic (real) and manipulated
(fake) images [32, 45, 52]. However, a significant challenge arises:
if the model is exclusively trained on a particular category of fake
images, its performance may falter when confronted with novel
types of manipulated images, i.e., the generalization dilemma [25].

In [32], Ojha et al. suggest that current detection models might
be biased towards identifying certain types of fake images because
they focus on easily detectable patterns found in those images.
As a result, these models might miss out on the subtle features
of real images, treating them as if they do not match the patterns
learned from the fake images. In order to overcome this, the authors
proposed to conduct classification using models that have trained
on diverse range of images during their initial training, i.e., mod-
els that are not specifically trained for deepfake detection. They
proposed to employ large vision-language models, in particular,
CLIP (Contrastive Language-Image Pre-training) [37] as a feature
extraction model, and train a linear classification head on top for
detecting deepfakes. They also observed that CLIP, even without
undergoing specific training for classifying real and fake images,
exhibits remarkable capability right from the start in discerning
between authentic and fake images. Refer to Figure 1 for details.

In [32], Ojha et al. adapted CLIP for deepfake detection using
linear probing, and the results they achieved showed strong general-
ization capabilities as compared to previous state-of-the-art [45] in
detecting deepfakes. However, as highlighted in [26, 50], adapting
CLIP through linear probing does not exploit its language com-
ponent, and only relies on visual features, which can lead to sub-
optimal performance. Our hypothesis is that by adapting CLIP
using both the visual and text encoders, we can enhance detection
performance, leading to a more effective and generalizable strategy
for deepfake detection. In order to then verify our hypothesis we
now raise this question: "Could combining CLIP’s visual and textual
capabilities further improve deepfake detection methods?"

In pursuit of an answer, we delve into existing research litera-
ture focused on adapting Vision-Language Models (VLMs), specifi-
cally CLIP [37], for image classification tasks. For instance, Prompt
Tuning [50] by Zhou et al. involves adapting a pre-trained CLIP
model using language supervision. This method freezes the large
CLIP model, and optimizes a small embedding treated as a prompt.
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Figure 1: Visualization of real (in red) and fake (in green) images
utilizing t-SNE in the feature space of various image encoders. The
feature space of CLIP demonstrates superior separation of real and
fake image features as compared to other two supervised models.

In [13], CLIP Adapter is introduced, which adds a lightweight lin-
ear layer inside the CLIP model. During training, the large CLIP
model remains frozen, while the smaller linear layer is optimized.
Surprisingly, these promising strategies have not been explored in
detecting deepfakes. The primary focus of our study is thus to de-
termine the most effective transfer learning strategy among
various options for large vision-language models in the con-
text of deepfake detection. Moreover, we also pose questions
such as, how various experimental conditions might impact the per-
formance of the adopted strategies. This includes examining their
ability to generalize to unseen data, performance when trained
with limited real or fake image samples, robustness to different
post-processing operations, and the impact of using a restricted
amount of data for training.

To answer all these questions, we conduct an empirical analysis
of the robustness of CLIP [37] when trained using these strategies,
and evaluate resulting models on data originating from varied dis-
tributions. Specifically, we take the pre-trained CLIP model, and
train it for deepfake detection using four distinct strategies, includ-
ing (1) Fine-tuning, (2) Linear Probing, (3) Prompt Tuning [50] and
(4) training an Adapter Network [13]. Following [45] and [32], we
employ ProGAN [20] as our training set. However, in contrast to
these studies, we only use 200𝑘 images for training as compared
to 720𝑘 images used by these two studies. We analyze our mod-
els on an extensive test set comprising of 21 different GAN-based,
Diffusion-based and Commercial image generators. Our approach
achieves high classification performance while using less training
data as compared to previous approaches.

Our contributions can be summarised as follows:

• We conduct an extensive empirical investigation into four distinct
transfer learning strategies aimed at enhancing the adaptability
and robustness of CLIP for deepfake detection, while taking
inspiration from recent research on adapting large VLMs.

• Through experimentation, we illustrate that our chosen transfer
learning strategies, notably Prompt Tuning, beats the current
state-of-the-art [32] by a clear margin.

• We carry out few-shot experiments, illustrating excellent perfor-
mance of our models even when exposed to only 32 𝑟𝑒𝑎𝑙/𝑓 𝑎𝑘𝑒
samples from each LSUN object category [49], highlighting the
effectiveness of the selected lightweight transfer learning strate-
gies.

• Robustness analysis conducted in the presence of post-processing
operations such as JPEG compression and Gaussian blurring.

• Analysis of the impact of training set size, demonstrating that
CLIP-based detectors achieve solid performance evenwhen trained
using a smaller amount of data (20k real fake images).

• We plan on making the associated code and trained models open-
source for the benefit of research community.
This paper is organized as follows. In Section 2 we present a brief

description of related works. In Section 3 we introduce the problem
background, our proposed deepfake detection workflows, and the
datasets that we employ for evaluation of our models. In Section 4
we elaborate in detail about the experiments we carried out for
the sake of this study, and discuss the achieved results. Finally in
Section 5 we conclude our study.

2 RELATEDWORKS
2.1 Pre-trained Vision-Language Models
Recent advancements in large-scale pre-trained models, which in-
tegrate vision and language capabilities, have showcased notable
success across a variety of tasks encompassing both images and
text [1, 18, 37]. The primary rationale driving the extensive adop-
tion of these models lies in their interesting zero-shot capabilities
and robustness to distribution shifts.

Radford et al. proposed Contrastive Language-Image Pre-training
(CLIP), a large-scale model that exhibits robust zero-shot perfor-
mance on several downstream tasks including image classification,
optical character recognition, image text retrieval, and multiple
other tasks [37]. CLIP was pre-trained on a large scale dataset
containing 400 million images, and their associated text captions.
CLIP was pre-trained utilizing a contrastive loss, aiming to maxi-
mize the similarity between corresponding image and text captions
compared to dissimilar pairs.

Moving away from the requirement of expensive data cleaning
process similar to Radford et al., Jia et al. [18] utilized a large-scale
noisy dataset containing one billion image-text pairs to pre-train
their model. The model was comprised of dual-encoder architecture,
which was tasked to align visual and language representations of
image-text pairs through a contrastive loss. They showed that a
large enough dataset can compensate for its noise, resulting in
state-of-the-art representations even with such a straightforward
learning approach.

2.2 Transfer Learning
Vision and language models like CLIP [37] and ALIGN [18] offer
interesting zero-shot capabilities on several different downstream
tasks. Yet, to attain performance levels comparable to state-of-the-
art models on these downstream tasks, these models require further
fine-tuning on task-specific datasets. For example, even on a simple
dataset like MNIST [27], the zero-shot CLIP model (ViT-B/16) which
was tested in [26] achieved an accuracy of only 55%.

However, it becomes apparent that fine-tuning full model on
downstream dataset affects its robustness to distribution shifts [37,
48]. In response to this challenge, several studies have introduced
techniques to fine-tune large vision and language models. In [50]
Zhou et al. proposed Context Optimization (CoOp), a fine-tuning
strategy to adapt vision-language models similar to CLIP for down-
stream image classification tasks. CoOp injects learnable vectors to
a textual prompt’s context (either at the front, middle or end), which



CLIPping the Deception: Adapting Vision-Language Models for Universal Deepfake Detection ICMR, June, 2024, Phuket, Thailand

are optimized during fine-tuning by minimizing the classification
loss, whereas, both the vision and text encoders of CLIP are kept
frozen. Gao et al. introduced CLIP-Adapter [13], a bottleneck layer
designed to learn new features during fine-tuning. Additionally,
it employs a residual-style feature aggregation approach to seam-
lessly integrate the originally pre-trained CLIP features with the
newly acquired ones, all while keeping CLIP model frozen itself.

2.3 Fake Image Generation and Detection
Deep learning models for fake image generation have been with us
for quite some time. Goodfellow et al. initially introduced Genera-
tive Adversarial Networks (GANs), a neural network architecture
for unconditional fake image generation [14]. Seminal works were
targeted on for example, improved training process of GANs [16, 21,
42], improving quality and diversity of the generated images [20, 24]
and conditional image synthesis [31, 46].

In more recent times, text-to-image generation models have
attracted interest following the introduction of Diffusion mod-
els [11, 30]. Most of the recent Diffusion based image synthesis
models, including Stable Diffusion [39], SDXL [36], DALL-E [38],
Imagen [41] have demonstrated the ability to produce high quality
images. Diffusion models also demonstrate the ability to gener-
ate images spanning a diverse range of categories and scenes as
compared to GANs.

With the widespread availability of powerful open-source fake
image synthesis models, the necessity to develop models capable
of detecting fake images has become more crucial than ever before.
Numerous previously proposed deepfake image detection methods
opted to learn a deep neural network classifier capable of classi-
fying 𝑟𝑒𝑎𝑙 vs 𝑓 𝑎𝑘𝑒 images originating from the same generative
model [40]. However, studies suggest that such classifiers do not
generalize well onto detecting fake images coming from other dis-
tribution than the training one [25, 52].

Wang et al. [45] proposed a simple yet effective solution to the
challenge of detecting images generated by GANs. By training a
well-known CNN architecture, ResNet-50 [17], on a single GAN-
generated dataset (ProGAN [20]), along with augmentations like
JPEG compression and blurring, they significantly improved the
model’s robustness. This approach performed well even on im-
ages generated by different GAN models. Building on this, Grag-
naniello et al. [15] modified ResNet-50 for GAN image detection.
They avoided down-sampling in initial layers in order to preserve
high frequency GAN realted fingerprints, and applied intense aug-
mentations during training, outperforming previous method [45].
Corvi et al. [8] extended work proposed in [15], training the same
modified ResNet-50 on the dataset from [45]. They found their
model excelled on GAN images but struggled with Diffusion mod-
els. However, training on images from LDMs [39] yielded success
on Diffusion-generated images but not on GAN ones. In a recent
study, Ojha et al. [32] noted that previous techniques [45] fail on
Diffusion model-generated images when initially trained on images
generated by GAN models. They utilized a fixed CLIP encoder to
train a linear classifier on CLIP features, achieving SOTA results for
both GAN and Diffusion model-generated images by just training
their model on GAN generated images same as [15, 45].

3 METHODOLOGY
3.1 Background
The ultimate objective of a deepfake detection system is to deter-
mine if any given image is (a) authentic: captured using a camera,
or (b) fake: synthesized using a generative model (GAN or Diffu-
sion). In this section, we outline the methodologies examined in
this study for training our detection model, along with the datasets
used to train and evaluate our model. However, we begin by first
presenting the baseline [46] and current SOTA [32] approaches
proposed recently to address this task. These studies effectively
leads us towards our proposed solution.

Wang et al. in [45] trained a ResNet-50 [17] using cross-entropy
loss to perform binary classification between 𝑟𝑒𝑎𝑙 and 𝑓 𝑎𝑘𝑒 im-
ages, using data they generated using the ProGAN model [20] after
training it on 20 different object categories taken originally from
LSUN [49]. For each of the 20 object categories, the authors gener-
ated 18k synthetic images, totaling up to 360k 𝑓 𝑎𝑘𝑒 images. They
incorporated 𝑟𝑒𝑎𝑙 images from the LSUN dataset, amounting to
18k 𝑟𝑒𝑎𝑙 images for each of the 20 object categories. Consequently,
their training dataset contained 720k 𝑟𝑒𝑎𝑙 and 𝑓 𝑎𝑘𝑒 images. They
demonstrated through comprehensive evaluation that a simple
CNN, when trained with meticulous data augmentation techniques
like compression and blurring, exhibits effective generalization for
deepfake detection on previously unseen data. They evaluated their
trained model on images synthesized by various different GAN
models showing excellent results.

Following this, Ojha et al. [32] found that the work in [45] was
not performing as expected when tested on images synthesized
by Diffusion models. For instance, on images generated by models
like Latent [39] and Guided [11] Diffusion models, the detection
model’s classification accuracy experiences a significant decline,
reaching close to chance performance. This implies that during
training, the model emphasizes solely on detecting the presence or
absence of model specific artifacts in an image, while overlooking
other distinguishing features between 𝑟𝑒𝑎𝑙 and 𝑓 𝑎𝑘𝑒 images. As a
consequence, the resulting model becomes biased towards a single
class (𝑟𝑒𝑎𝑙 in this case), leading to the misclassification of 𝑓 𝑎𝑘𝑒
images from a Diffusion model without GAN-specific artifacts as
𝑟𝑒𝑎𝑙 .

To tackle this issue, the authors suggested that the classification
process should occur in a feature space that has not been solely
learned to discriminate between 𝑟𝑒𝑎𝑙 and 𝑓 𝑎𝑘𝑒 images. This ap-
proach was aimed at preventing bias towards recognizing specific
artifacts from one class (Real, GAN, or Diffusion) disproportion-
ately better than the other [32]. Additionally, the selected feature
space must capture a wide range of images, ensuring a robust fake
image detector that works reliably across various categories such
as outdoor scenes, objects, faces and beyond. The authors identified
that CLIP’s [37] feature space possesses these desirable qualities –
it was not initially trained for 𝑟𝑒𝑎𝑙 vs 𝑓 𝑎𝑘𝑒 classification, and has
been exposed to a variety of images representing diverse objects
and scenes.

To validate their hypothesis, the authors used CLIP’s image en-
coder (ViT-Large) as a feature extractor, and trained a simple linear
model on top. They used the same dataset as in [45] training. The
obtained results supported their hypothesis: their simple approach
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Figure 2: In this figure, we present four distinct transfer learning strategies that are explored for 𝑟𝑒𝑎𝑙/𝑓 𝑎𝑘𝑒 image classification. At bottom
right we list the number of trainable parameters for each approach.

achieved state-of-the-art performance on previously unseen images
from both GAN and Diffusion models [32]. While [32] achieves
excellent results on most datasets, it still seems to struggle on some
datasets, including GuidedDiffusion [11], LDM [39], Deepfakes [40],
FaceSwap [40], and Commercial generators such as DALL-E 3 1,
Adobe Firefly 2 and Midjourney 3.

3.2 Transfer Learning
When applied to adapt vision-language models for downstream
vision tasks, linear probing faces a significant drawback as it com-
pletely overlooks the language component. As noted in [50], a linear
layer trained on visual features serves as a static set of weights ex-
clusively representing visual concepts. Consequently, the semantics
embedded in texts remain largely unexplored, and irrelevant during
this process. This limitation is exemplified in [32], where only the
visual component of CLIP is utilized for deepfake detection, while
completely neglecting the text encoder. We believe that leverag-
ing both the visual and text encoders of CLIP [37] can lead to an
improved strategy for 𝑟𝑒𝑎𝑙 vs 𝑓 𝑎𝑘𝑒 classification.

Based on this insight, we propose leveraging CoOp [50], a Prompt
Tuning strategy as our central approach to adapt CLIP [37] for
deepfake detection. Prompt tuning is particularly appealing as it
integrates both the visual and language aspects of CLIP. To ensure
a fair assessment of the robustness of various transfer learning
strategies, we incorporate three additional methods, in addition to
Prompt Tuning for this task, including (1) Linear Probing, (2) Full
1https://openai.com/dall-e-3
2https://www.adobe.com/products/firefly.html
3https://www.midjourney.com/

Fine-tuning and (3) training an Adapter Network [13]. A concise
overview of each employed transfer learning strategy is presented
in the following sections.

3.2.1 Linear Probing: Linear probing, a well-known transfer
learning strategy, involves fine-tuning a linear classifier on top of a
frozen model (CLIP in our case). We follow the same approach as
employed by Ojha et al. [32], i.e., we discard CLIP’s text encoder
while freezing its image encoder. We then train a single linear layer
for classification on the frozen CLIP’s image features, mapping the
penultimate image features to logits for class predictions using the
Sigmoid activation function. The optimization takes place using
the binary cross entropy loss. We illustrate linear probing strategy
in Figure 2.

3.2.2 Fine-tuning: Fine-tuning in this context means training the
whole CLIP model (ViT-Large) again on the downstream dataset,
which in our case is the ProGAN dataset which was also used
by [45] and [32]. Full fine-tuning requires significantly more com-
pute resources, data, and training time since the entire model is
retrained. Additionally, as model size increases, this strategy demon-
strates instability and inefficiency [26]. During the training of our
models, we encountered this issue, and mitigated it by utilizing an
extremely small learning rate, 1× 10−6. To fine-tune our model, we
adhere to the procedure outlined in the pre-training of CLIP [37].
However, we introduce a modification: rather than utilizing entire
text captions for each image, we provide only single-word captions,
specifically either 𝑟𝑒𝑎𝑙 or 𝑓 𝑎𝑘𝑒 . A typical Fine-tuning pipeline for
adapting CLIP is illustrated in Figure 2.
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Table 1: This table showcases the statistics of the test datasets. Certain
datasets include their own collection of 𝑟𝑒𝑎𝑙 images. However, for
datasets that lack their own 𝑟𝑒𝑎𝑙 images, we utilize LAION’s [43]
images instead.

Generator Num.
𝑟𝑒𝑎𝑙 /𝑓 𝑎𝑘𝑒

Real Data
Source

Image
Resolution

ProGAN [20] 4k / 4k LSUN 256 x 256
BigGAN [3] 2k / 2k ImageNet 256 x 256
CycleGAN [51] 1k / 1k Various 256 x 256
EG3D [4] 1k / 1k LAION 512 x 512
GauGAN [35] 5k / 5k COCO 256 x 256
StarGAN [6] 2k / 2k CelebA 256 x 256
StyleGAN [23] 1k / 1k LSUN 256 x 256
StyleGAN2 [24] 1k / 1k Various ≈ 256 x 256
StyleGAN3 [22] ≈ 1k / 1k Various 512 x 512
Taming-T [12] 1k / 1k LAION 256 x 256
DALL-E (mini) [10] 1k / 1k LAION 256 x 256
Glide [30] 1k / 1k LAION 256 x 256
Guided [33] 1k / 1k LAION 256 x 256
LDM [39] 1k / 1k LAION 256 x 256
Stable Diff. [39] 1k / 1k LAION 512 x 512
SDXL [36] 1k / 1k LAION 1024 x 1024
Deepfakes [40] ≈ 2.7k / 2.7k YouTube ≈ 256 x 256
FaceSwap [40] 2.8k / 2.8k YouTube ≈ 256 x 256
Midjourney-V5 1k / 1k LAION Various
Adobe Firefly 1k / 1k LAION Various
DALL-E 3 1k / 1k LAION Various

3.2.3 Prompt Tuning: Initially introduced in the domain of nat-
ural language processing [28], Prompt Tuning is a relatively recent
transfer learning strategy adopted by the computer vision commu-
nity. This approach involves fine-tuning a pre-trained model like
CLIP [37] by learning randomly initialized prompts (textual [50]
and/or visual [19]) during training. The primary goal of Prompt
Tuning is to adapt the model on specific downstream tasks by opti-
mizing the prompts to align better with the target objectives.

In this study, we employ Context Optimization (CoOp), a transfer
learning strategy introduced by Zhou et al. in [50], to fine-tune CLIP
for the task of deepfake image detection. CoOp appends learnable
vectors along with the context words4 of a prompt. These learnable
vectors can be either initialized with random values or pre-trained
word embeddings [50]. During training the learnable vectors are
optimized whereas both the text and vision encoders of CLIP are
kept frozen.

𝑡 = [𝑉 ]1 [𝑉 ]2 . . . [𝑉 ]𝑀 [𝐶𝐿𝐴𝑆𝑆] (1)
Where each [𝑉 ]𝑚 (𝑚 ∈ 1, ..., 𝑀) is a vector with the same dimension
as word embeddings, e.g., 768 for CLIP (ViT-Large) [50]. 𝑀 is a
hyperparameter referring to the number of context tokens, i.e.,
[𝑉 ]𝑀 . We experiment with 𝑀 = [4, 8, 16, 24]. [𝐶𝐿𝐴𝑆𝑆] refers to
class token of the dataset, e.g., 𝑟𝑒𝑎𝑙 and 𝑓 𝑎𝑘𝑒 in our case. Class
token within each prompt 𝑡𝑖 is swapped with the corresponding
word embedding vector of the 𝑖-th class name. The prompt 𝑡 is then
fed through the text encoder, and optimized using cross-entropy
loss during training. As evident from Eq. 1, the context tokens are
added at the beginning of the class labels. While the CoOp paper
explores various appending strategies, such as "end" and "middle",

4Context words refer to labels of any given dataset. In our case, the labels are 𝑟𝑒𝑎𝑙
and 𝑓 𝑎𝑘𝑒 .

our findings indicate that appending context tokens at the "front"
yields comparably better results. We show Prompt Tuning (CoOp)
based CLIP training strategy in Figure 2.

3.2.4 Adapter Network: Stepping away from Prompt Tuning,
Gao et al. introduced a simple yet effective alternative approach
for fine-tuning vision-language models using feature adapters [13].
Specifically, the authors introduce CLIP-Adapter, an extra light-
weight bottleneck layer which is optimized during training while
the remainder of the CLIP model is kept frozen. Additionally, to
remain robust against unseen data distributions, CLIP-Adapter
integrates the original zero-shot visual or language embeddings
with the corresponding fine-tuning feature embeddings through a
ResNet styled residual connection [17]. This feature blending allows
CLIP-Adapter to exploit both the knowledge stored in the original
CLIP’s feature space, and the newly acquired knowledge from the
downstream training examples simultaneously. CLIP-Adapter can
be applied to either the visual or language branch. In our study
however, we only use Adapter Network with Vision branch, and
leave the language branch as is. See Figure 2 for reference.

3.3 Generative Models Explored
In this paper, we conduct an in-depth investigation into four distinct
transfer learning approaches for deepfake detection. Our analysis
is aimed at assessing the robustness of these approaches when
coupled with pre-trained CLIP [37] ViT-Large model for deepfake
detection when exposed to unseen data coming from diverse deep-
fake generators including GANs and Diffusion models.

We follow the same protocols outlined by Wang et al. [45]
and Ojha et al. [32], and train our models using data coming from
just one generative model i.e., ProGAN [20]. However, for evalua-
tion we incorporate an even broader spectrum of generative models
in our analysis. This extension aims to align our evaluation more
closely with real-world scenarios. In total, we assess our models
across 21 distinct datasets, primarily categorized as GAN-based,
Diffusion-based and commercial tools [8]. For detailed dataset sta-
tistics, please refer to Table 1.

Another minor fluctuation in evaluation protocol we follow is
that [32] employed three distinct configurations for image gener-
ation using Glide and LDMs, presenting their findings separately.
In contrast, we include all images from Glide and LDM subsets in
our analysis but display averaged results in our tables due to space
constraints.

4 EXPERIMENTS
In this section, we present performance scores achieved by CLIP
ViT-Large [37] when trained using four distinct transfer learn-
ing strategies: (1) Linear Probing, (2) Fine-tuning, (3) Adapter Net-
work [13] and (4) Prompt Tuning [50]. Additionally, we evaluate
trained models released by [8, 15, 32, 45] on the same test set on
which we evaluate our own models. Our aim is to determine if our
chosen transfer learning strategies offer superior generalization
compared to previous studies. In subsequent sections, besides as-
sessing generalization capabilities, we conduct further experiments
to assess performance of our models under various conditions, in-
cluding smaller training set sizes, few-shot analysis, and robustness
to post-processing operations.
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Table 2: Generalization performance. This table presents the average precision (AP) of different methods for distinguishing 𝑟𝑒𝑎𝑙 and 𝑓 𝑎𝑘𝑒

images. The studied adaptation approaches demonstrate significant improvements over the previous baselines and SOTA.

Method Variant Generative Adversarial Networks DALL-E Denoising Diffusion Models FF++ mAP
Pro
GAN

Big
GAN

Cycle
GAN EG3D Gau

GAN
Star
GAN

Style
GAN

Style
GAN-2

Style
GAN-3 Taming-T Glide Guided LDM SD SDXL Deep

Fakes
Face
Swap

Wang et al.
(CVPR’20)

Blur+JPEG (0.1) 100.00 83.04 90.09 95.58 88.94 97.18 99.27 96.43 98.63 73.90 67.47 81.02 83.10 68.61 64.33 72.27 75.88 50.78 81.18
Blur+JPEG (0.5) 100.00 82.63 94.71 55.32 96.62 93.88 93.25 88.64 85.33 59.78 60.92 69.75 65.11 60.24 52.14 65.92 64.33 49.76 72.65

Gragn. et al.
(ICME’21)

ResNet-50
No Downsample 100.00 97.57 97.63 99.95 98.36 99.99 100.00 99.98 100.00 95.31 91.32 94.08 93.81 92.33 91.75 90.93 95.90 61.54 94.24

Corvi et al.
(ICASSP’23)

ProGAN/LSUN 100.00 99.66 97.94 99.92 99.74 99.95 100.00 99.96 99.93 94.34 95.45 89.51 79.30 88.26 87.01 74.90 95.52 56.58 91.52
Latent/LSUN 91.83 74.25 49.05 42.87 89.14 50.19 73.25 74.73 70.20 95.21 98.15 87.35 59.17 100.00 100.00 99.23 83.70 45.52 79.93

Ojha et al.
(CVPR’23)

CLIP
Linear Probing 99.99 98.73 98.92 79.58 99.74 96.06 95.73 95.81 92.21 97.12 96.84 93.85 92.09 95.71 93.58 88.55 77.48 75.87 93.05

Ours

Linear Probing 99.91 97.77 98.53 99.48 99.69 99.00 95.53 94.98 99.54 97.74 95.65 97.75 92.14 95.94 92.24 94.99 80.07 76.58 95.22
Fine Tuning 100.00 98.65 99.00 99.97 98.12 100.00 99.61 99.48 100.00 98.38 98.15 96.23 97.40 98.79 97.53 99.52 87.42 60.22 96.29
Adapter 100.00 99.58 99.97 99.50 99.98 99.98 99.44 98.80 99.83 99.27 98.60 99.26 96.16 97.76 91.90 92.32 91.37 82.11 97.27

Prompt Tuning 100.00 99.42 99.92 99.51 99.95 99.97 99.52 98.62 99.68 99.54 98.89 99.32 97.41 97.91 96.23 96.42 92.59 88.01 98.06

Table 3: Generalization performance. This table compares the accuracy (Acc) scores attained by our proposed techniques with various previous
studies. The proposed CLIP adaptation strategies show noteworthy performance gains compared to previous baselines and SOTA techniques.

Method Variant Generative Adversarial Networks DALL-E Denoising Diffusion Models FF++ Avg.
AccPro

GAN
Big
GAN

Cycle
GAN EG3D Gau

GAN
Star
GAN

Style
GAN

Style
GAN-2

Style
GAN-3 Taming-T Glide Guided LDM SD SDXL Deep

Fakes
Face
Swap

Wang et al.
(CVPR’20)

Blur+JPEG (0.1) 99.90 67.65 79.50 72.65 76.63 89.72 82.10 77.05 80.68 56.45 55.05 61.15 62.90 54.03 52.50 53.40 52.67 49.68 66.09
Blur+JPEG (0.5) 99.65 58.13 77.80 50.30 75.56 79.99 69.80 62.30 53.42 51.05 51.90 54.33 52.35 51.35 50.15 51.00 51.46 50.02 59.18

Gragn. et al.
(ICME’21)

ResNet-50
No Downsample 100.00 93.27 91.75 97.55 94.13 99.65 97.25 89.75 97.47 67.45 60.65 69.38 67.30 62.33 59.70 57.75 65.31 50.02 76.59

Corvi et al.
(ICASSP’23)

ProGAN/LSUN 100.00 95.85 90.35 98.40 92.46 99.00 97.65 84.90 82.79 65.30 69.30 58.98 53.10 58.83 55.70 52.10 59.38 50.11 72.72
Latent/LSUN 50.94 51.82 46.20 49.25 50.86 48.02 59.40 50.95 50.05 77.65 87.00 59.83 50.95 99.25 99.25 93.10 69.87 48.14 66.40

Ojha et al.
(CVPR’23)

CLIP
Linear Probing 98.94 94.48 94.20 57.75 94.65 87.49 85.55 83.40 75.42 89.45 89.20 82.15 79.00 87.80 81.90 74.15 62.71 64.30 82.84

Ours

Linear Probing 98.50 91.75 91.00 98.20 88.08 94.42 81.40 71.70 94.11 91.05 85.80 90.55 79.05 87.42 77.30 83.85 69.37 68.30 86.26
Fine Tuning 99.60 77.38 71.55 98.40 65.70 100.00 94.85 95.30 99.89 94.40 93.20 88.78 92.35 95.17 91.75 97.35 76.46 52.11 88.74
Adapter 99.88 94.75 97.45 95.30 95.47 99.12 93.35 78.35 93.11 94.55 92.00 94.27 81.65 89.18 67.70 71.60 77.11 70.16 88.72

Prompt Tuning 99.83 93.80 95.60 93.50 93.43 99.15 95.25 82.95 93.11 94.95 91.50 92.88 84.3 88.16 76.45 77.80 78.45 74.66 89.45

4.1 Generalization Performance
We evaluate our model’s performance by comparing it with four
prior studies that aim to detect various types of deepfake images
generated by different fake image generators. The initial study [45]
in this field employed ResNet-50 [17] as the classifier. They trained
their models on 720𝑘 𝑟𝑒𝑎𝑙/𝑓 𝑎𝑘𝑒 images sourced from the ProGAN
dataset which they generated for the sake of their study. They also
employed image augmentations such as JPEG noise and Gauss-
ian blurring, which made their models more robust towards post-
processed images during evaluation. The second study [15] also
employs ResNet-50, but with a simple adjustment to the original
architecture to better preserve the low-level forensic traces present
inside images. The proposed modified model was also trained on
the ProGAN dataset for 𝑟𝑒𝑎𝑙/𝑓 𝑎𝑘𝑒 classification introduced in [45].
In [8] use the samemodified ResNet-50 [15] but train it again on two
different datasets, i.e., ProGAN/LSUN and LatentDiffusion/LSUN to
better understand which generative model offers better generaliza-
tion. The fourth study from Ojha et al. [32] attained state-of-the-art
performance. They utilized the CLIP ViT-Large model as a feature
extractor, and subsequently trained a linear network on top of it
for 𝑟𝑒𝑎𝑙/𝑓 𝑎𝑘𝑒 classification.

In Tables 2 and 3, we compare our models’ performance with
that of [8, 15, 32, 45]. These studies [15, 45] demonstrate strong
performance on GAN-generated images but show mediocre re-
sults on images from Diffusion-based and Commercial generators.
Conversely, [32] achieves good results on both GAN-based and
Diffusion-based generators, although performance decreases on

images from Commercial image generators (see Table 6) and Face-
Forensics++ dataset [40], which utilizes an Auto-encoder based
architecture for image synthesis.

Our four proposed CLIP adaptation approaches for deepfake
detection demonstrate consistently better performance across all
datasets as apparent from numbers in Tables 2, 3 and 6. However,
as seen in Tables 2 and 3, the Prompt Tuning strategy [50] notably
outperforms other transfer learning strategies in terms of both mAP
and average accuracy. Notably, Prompt Tuning optimizes only a
fraction of parameters (12k) compared to the Adapter Network and
full Fine-tuning approaches, which optimize a larger number of
parameters. Overall, we surpass the previous SOTA [32] by 5.01% in
mAP and 6.61% in average accuracy across images from 18 distinct
synthetic image generators.

4.2 Effect of Transfer Learning Strategy
In this section, we assess and compare the effectiveness of transfer
learning strategies trained on images from ProGAN/LSUN datasets.
Results are summarized in Tables 2 and 3. It is evident from the
reported numbers that Prompt Tuning (CoOp) outperforms other
strategies. Despite a modest margin, this is noteworthy as Prompt
Tuning optimizes only a fraction of parameters (≈ 12𝑘) compared
to Linear Probing, Fine-tuning and Adapter Network, which opti-
mize approximately (≈ 1.5𝑘), (≈ 427𝑀) and (≈ 590𝑘) parameters
respectively. Moreover, in few-shot experiments as shown in Table 5
Prompt Tuning also outperforms other three strategies. However, in
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Figure 3: Average precision (AP) score distribution of participating transfer learning strategies on the test set comprised of images sourced
from 18 different datasets, as given in Tables 2 and 3. The red dotted line represents chance performance.

Figure 4: Accuracy (Acc) scores achieved by participating transfer learning strategies on the test set comprised of images sourced from 18
different datasets, as given in Tables 2 and 3. The red dotted line represents chance performance.

terms of robustness to post-processing operations, Linear Probing
turns out to be best performing strategy.

4.3 Effect of Training Set Size
We also conducted experiments with various training set sizes,
and in this section, we report on the performance of participating
transfer learning strategies when trained with reduced numbers
of 𝑟𝑒𝑎𝑙 and 𝑓 𝑎𝑘𝑒 images. Using ProGAN’s [20] data, we create
four smaller datasets containing 20k, 40k, 60k and 80k images. As
shown in Table 4, we observe that while larger training datasets
generally yield higher scores, the differences are not significant.
Moreover, since the 𝑓 𝑎𝑘𝑒 images in the training data are generated
by a GAN model (ProGAN [20]), the impact of training data size
is less pronounced when evaluating models on other GAN models
in the test set compared to Diffusion models, or Commercial tools.
This analysis indicates that even with limited training resources, it
is still possible to train robust detectionmodels without a significant
decline in generalization capabilities.

4.4 Robustness to Post-processing Operations
In real-world scenarios, images commonly undergo post-processing
before being shared online, and research indicates that these opera-
tions significantly impact detection models’ performance [9, 32, 45].
To assess how our models handle post-processing, following pre-
vious studies [32, 45], we evaluate them on images subjected to
two types of operations: (1) JPEG compression and (2) Gaussian
blurring.

To gauge the impact of JPEG compression, we tested two quali-
ties: 75% and 50%. For blurring effects, we used sigma values of 1 and
2. The performance results of our models are depicted in Figure 5.
As expected, there is a decline in performance as sigma and com-
pression values increase, though still acceptable considering our
models weren’t explicitly trained on compressed or blurred images.
One thing we notice is that this decline is more pronounced for

images generated by Commercial tools, except for fully Fine-tuned
model. Linear Probing outperforms other adaptation strategies well
across the three different generative model families.

4.5 Few-shot Analysis
Wenow conduct experiments to investigate how participating trans-
fer learning approaches perform when trained on extremely limited
data, specifically only 640 images (320 𝑟𝑒𝑎𝑙 , 320 𝑓 𝑎𝑘𝑒). Here, we
present the results achieved by our models in a few-shot setting.

We train CLIP (ViT-Large) model using four different trans-
fer learning strategies, i.e., (1) Linear Probing, (2) Fine-tuning, (3)
Adapter Network [13] and (4) Prompt Tuning [50] in a few-shot
setting. We use only 32 (16 𝑟𝑒𝑎𝑙 and 16 𝑓 𝑎𝑘𝑒) images from each of

Table 4: This table presents scores achieved by our models trained
using samller sized datasets. Results are organized based on number
of available training images: 20k, 40k, 60k and 80k. We keep equal
amount of 𝑟𝑒𝑎𝑙/𝑓 𝑎𝑘𝑒 images, e.g., for 20k subset, we have 10k 𝑟𝑒𝑎𝑙

and 10k 𝑓 𝑎𝑘𝑒 images.

Method Num. Train
Images

Family of Generators Average
AP/AccGAN

AP/Acc
Diffusion
AP/Acc

Comm. Tools
AP/Acc

Linear Probing

20k

98.86 / 90.78 97.13 / 90.76 80.38 / 74.93 92.12 / 85.49
Fine-tuning 95.68 / 78.10 86.79 / 69.39 71.45 / 63.78 84.64 / 70.43
Adapter 98.57 / 89.17 93.51 / 83.81 62.01 / 53.60 84.70 / 75.53
Prompt Tuning 98.95 / 90.42 96.14 / 87.33 76.10 / 59.62 90.40 / 79.12

Linear Probing

40k

98.94 / 91.28 97.23 / 90.60 77.60 / 73.42 91.26 / 85.10
Fine-tuning 96.83 / 80.10 88.44 / 70.32 69.85 / 63.00 85.04 / 71.14
Adapter 98.98 / 89.69 94.71 / 83.39 62.03 / 52.82 85.24 / 75.30
Prompt Tuning 99.00 / 91.43 96.15 / 86.79 79.52 / 60.10 91.56 / 79.44

Linear Probing

60k

98.97 / 91.33 97.41 / 91.18 77.41 / 73.90 91.26 / 85.47
Fine-tuning 97.08 / 79.91 89.05 / 69.36 70.59 / 62.55 85.58 / 70.60
Adapter 99.35 / 91.74 95.93 / 85.07 64.85 / 53.75 86.71 / 76.85
Prompt Tuning 99.29 / 91.69 96.47 / 85.64 76.94 / 57.25 90.90 / 78.20

Linear Probing

80k

98.94 / 91.38 97.31 / 90.68 76.69 / 73.13 90.98 / 85.06
Fine-tuning 97.75 / 82.79 90.45 / 73.69 72.08 / 65.45 86.76 / 73.98
Adapter 99.46 / 92.12 96.12 / 83.73 66.28 / 53.28 87.29 / 76.38
Prompt Tuning 98.93 / 89.30 96.58 / 85.60 80.95 / 58.08 92.15 / 77.66
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Figure 5: This figure shows how different transfer learning strategies cope with post-processing operations including JPEG compression and
Gaussian blurring. Our models perform well with GAN and Diffusion images but struggle with those from commercial tools like DALL-E 3
and Adobe FireFly. Surprisingly, the Fine-tuned CLIP model is more robust against compressed images sampled using Commercial tools as
compared to GAN-based and Diffusion-based images. Linear Probing achieves optimal performance across all three datasets.

the object categories available in the LSUN [49] and ProGAN [20]
datasets. In total, we train the models using 640 𝑟𝑒𝑎𝑙/𝑓 𝑎𝑘𝑒 images.
We present the achieved Average Precision (AP) and Accuracy (Acc)
scores in Table 5. It is apparent from the results that Prompt Tuning
outperforms other transfer learning strategies by a clear margin on
images sampled from GAN-based, Diffusion-based and Commercial
image generators.

4.6 Performance on Commercial Tools
Besides evaluating the models on images sampled by a number of
different GAN-based and Diffusion-based image generators, fol-
lowing [9] we also carry out evaluations of baseline methods, and
the transfer learning strategies we employ on images generated
by Commercial tools including Midjourney-V5, Adobe Firefly and
DALL-E 3. We present the comparison of results in Table 6. The
numbers clearly demonstrate that the transfer learning strategies
utilized in this paper surpass previously proposed deepfake detec-
tion methods. Additionally, it’s noteworthy that our models are
trained using only 200k 𝑟𝑒𝑎𝑙/𝑓 𝑎𝑘𝑒 images, compared to the studies
we’re comparing against, which utilize 720k images for training.

Table 5: We present the results from our few-shot (32-shot) experi-
ments, wherein we train CLIP using various transfer learning strate-
gies on 𝑟𝑒𝑎𝑙/𝑓 𝑎𝑘𝑒 images from the ProGANdataset.We then evaluate
the trained models on images generated by GANs, Diffusion models
and Commercial image generators.

Method
Family of Generators Average

AP/AccGAN
AP/Acc

Diffusion
AP/Acc

Comm. Tools
AP/Acc

Linear Probing 94.39 / 83.62 89.67 / 80.47 76.78 / 69.72 86.95 / 77.94
Fine-tuning 97.09 / 85.23 90.14 / 77.18 71.35 / 65.90 86.19 / 76.11
Adapter 97.40 / 87.27 90.53 / 81.12 61.69 / 53.93 83.21 / 74.11
Prompt Tuning 98.61 / 89.88 95.97 / 84.76 87.23 / 66.38 93.94 / 80.34

Table 6: Robustness of transfer learning strategies across different
families of generative models.

Method
Family of Generators Average

AP/AccGAN
AP/Acc

Diffusion
AP/Acc

Comm. Tools
AP/Acc

Wang et al. (CVPR’20) 92.32 / 78.23 74.29 / 57.15 61.57 / 52.43 76.06 / 62.61
Gragn. et al. (ICME’21) 98.88 / 92.83 92.86 / 64.53 72.58 / 56.53 88.10 / 71.30
Corvi et al. (ICASSP’23) 99.14 / 90.67 86.06 / 57.15 66.40 / 54.62 83.87 / 67.48
Ojha et al. (CVPR’23) 95.39 / 86.13 93.66 / 82.77 75.26 / 68.42 88.10 / 79.11

Ours (LP) 98.22 / 90.02 95.60 / 86.01 81.95 / 72.53 91.92 / 82.86
Ours (FT) 99.32 / 89.73 97.72 / 92.59 98.52 / 94.48 98.52 / 92.27
Ours (Adapter) 99.63 / 94.13 96.83 / 85.70 70.29 / 55.17 88.92 / 78.33
Ours (Prompt T.) 99.61 / 94.16 97.97 / 86.86 85.71 / 59.62 94.43 / 80.21

5 CONCLUSION
Our study examines the robustness of CLIP in detecting deepfake
imagery across diverse data distributions. We explore four distinct
transfer learning strategies, including Fine-tuning, Linear Prob-
ing, Prompt Tuning and training an Adapter Network, using a
diverse training set of 200k images from the ProGAN dataset. Our
experiments encompass evaluation on a comprehensive test set
comprising 21 different image generators.

Through our experiments, we illustrate that transfer learning
strategies incorporating both the image and text components of
CLIP consistently surpass the performance of simpler approaches
like Linear Probing, which solely utilizes the visual aspect of CLIP.
Our findings highlight Prompt Tuning’s superiority over current
baselines and SOTA methods, achieving significant margins of im-
provement while showcasing its efficacy despite minimal training
parameters. Additionally, we conduct few-shot experiments, an-
alyze robustness under post-processing operations such as JPEG
compression and Gaussian blurring, and demonstrate the consis-
tent performance of our CLIP-based detectors even with a smaller
training set size of 20k images.
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