Knowledge-Based Systems 276 (2023) 110750

Contents lists available at ScienceDirect =
Knowledge-Based Systems
journal homepage: www.elsevier.com/locate/knosys
A Software Reference Architecture for Journalistic Knowledge R
Platforms™ e

Marc Gallofré Ocaiia *, Andreas L. Opdahl

University of Bergen, Department of Information Science and Media Studies, Bergen, 5020, Norway

ARTICLE INFO ABSTRACT

Article history:

Received 18 October 2022

Received in revised form 5 June 2023
Accepted 24 June 2023

Available online 30 June 2023

Newsrooms and journalists today rely on many different artificial-intelligence, big-data and knowledge-
based systems to support efficient and high-quality journalism. However, making the different systems
work together remains a challenge, calling for new unified journalistic knowledge platforms. A software
reference architecture for journalistic knowledge platforms could help news organisations by capturing
tried-and-tested best practices and providing a generic blueprint for how their IT infrastructure should

Keywords: evolve. To the best of our knowledge, no suitable architecture has been proposed in the literature.
Software reference architecture Therefore, this article proposes a software reference architecture for integrating artificial intelligence
Newsrooms and knowledge bases to support journalists and newsrooms. The design of the proposed architecture
Knowledge graphs is grounded on the research literature and on our experiences with developing a series of prototypes
Journalism in collaboration with industry. Our aim is to make it easier for news organisations to evolve their
girg“(fj‘;;l intelligence existing independent systems for news production towards integrated knowledge platforms and to

direct further research. Because journalists and newsrooms are early adopters of integrated knowledge
platforms, our proposal can hopefully also inform architectures in other domains with similar needs.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

News organisations today are forced to constantly adapt their
business models to digital media innovations to increase informa-
tion quality, competitiveness and growth [1,2]. Potentially news-
relevant information can come from almost any type of source
and in any data format. The daily global production of news
exceeds 100.000 articles [3], while social media generate similar
volumes within a second. Consequently, news organisations can
benefit from using big data and artificial intelligence (Al) solu-
tions to manage information, extract knowledge and create value
for more and more journalistic purposes [4] including: identifying
and contextualising newsworthy events to find connections along
millions of articles in investigative journalism; facilitating data
visualisation with the support of storytelling techniques in digital
journalism; automating news writing utilising structured data to
automatically create and publish reports about markets, sports
and weather (a.k.a. robot journalism, algorithmic journalism or
automated journalism); and, providing real-time fact-checking
tools to identify fake claims using external knowledge bases in
political journalism.

™ This work was supported by the Norwegian Research Council IKTPLUSS
project 275872.
* Corresponding author.
E-mail addresses: marc.gallofre@uib.no (M. Gallofré Ocafia),
andreas.opdahl@uib.no (A.L. Opdahl).

https://doi.org/10.1016/j.knosys.2023.110750

Unsurprisingly, both research and industry agree on the rel-
evance and challenges associated with future Al systems across
domains [5]. Particularly, future AI systems must be semanti-
cally sound and explainable, as well as foster trustworthy Al
To achieve this, these systems must be able to integrate sub-
symbolic deep learning, symbolic knowledge representation and
logical reasoning [6]. Knowledge graphs are a topical choice for
knowledge representation and reasoning [7] alongside neural
networks for implementing sub-symbolic Al. As the world is
constantly changing, these systems must incorporate continuous-
learning techniques to keep deep learning (DL) and machine
learning (ML) models up-to-date.

Journalistic knowledge platforms. An emerging type of informa-
tion system that integrates Al, big data and knowledge bases
to support high-quality journalism [8]. In this article, we refer
to these systems as Journalistic Knowledge Platform (JKPs). JKPs
harvest and analyse news and social media information over the
net in real time [3] and leverage encyclopedic sources [9,10].
News-relevant information is semantically annotated and repre-
sented in knowledge bases using linked open data (LOD) [11]
and Al techniques like natural language processing (NLP) [12].
The resulting knowledge bases are exploited with data analysis,
reasoning and information retrieval techniques to provide jour-
nalists with meaningful background knowledge and newsworthy
information [13,14], as well as to help journalists and readers
dive more deeply into information, events and story lines [15-17].

0950-7051/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.knosys.2023.110750
https://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2023.110750&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:marc.gallofre@uib.no
mailto:andreas.opdahl@uib.no
https://doi.org/10.1016/j.knosys.2023.110750
http://creativecommons.org/licenses/by/4.0/

M. Gallofré Ocafia and A.L. Opdahl

JKPs typically implement different mechanisms for interacting
with the system, for example, to provide live feeds and alerts and
to search for information. Because JKPs combine and represent
personal data from different sources, they must also consider
the privacy policies [18]. To combat the dissemination of fake
news and misinformation, JKPs must also manage the prove-
nance of news and its sources, facilitating its identification. All
these aspects make JKPs a particularly complex kind of big-data
knowledge-centric intelligent system.

Work on JKPs has so far been driven by the research com-
munity, albeit often in collaboration with industry. We envision
that the field will continue to gain industrial traction in the
near term. Because journalists and newsrooms are early adopters
of integrated knowledge platforms in general, we also envision
that our work in the journalistic domain can also inform other
knowledge-intensive domains that rely critically on exploiting
high-volume, high-velocity and high-variety information sources.

Software reference architecture. Today, most news organisations
rely on many current, independent and task-specific produc-
tion systems. However, depending on multiple systems entails a
higher resource footprint compared to integrated systems that
reduce code and data duplication. The utilisation of multiple
systems also increases the cost of coordinating developer teams
and providers, as well as the cost of maintaining and updating
the systems. Organisations may lose control over their data and
knowledge because their systems do not share common data
repositories nor representations or are provided as Software as
a Service (SaaS) by third parties. As a consequence, organisations
may miss out on opportunities for exploiting potentially news-
relevant information [8]. These concerns can be addressed by
having a clear system design and a system architecture that
allows organisations to integrate and expand their solutions in a
coherent manner over time. Therefore, in this article, we propose
a software reference architecture (SRA) for JKPs. The proposed
architecture can also serve as an example of a more general high-
level architecture for future big-data Al systems that combine
deep learning and knowledge graphs and that support evolving
knowledge. We are focusing in particular on JKPs that employ
semantic knowledge graphs [7] for knowledge representation.
An SRA for JKPs should provide news organisations with a
blueprint and associated advice for how to evolve its many
current systems towards a cohesive, comprehensive, and inte-
grated JKP [8]. On the organisational level, central challenges
are that JKPs (a) are complex systems that must balance many
concerns [3] and are thus challenging to adopt without archi-
tectural guidance; (b) must interoperate with a wide variety of
in-house legacy systems and external services [13]; and, (c) are
long-term investments that must be able to evolve to incorpo-
rate future best-of-breed components that replace or come in
addition to existing ones [3]. On the technical level, JKPs need
to support (a) the ingestion of big data from diverse sources,
(b) the semantic annotation, representation and enrichment of
news-relevant items [15]; (c) the inclusion of diverse mecha-
nisms for serving potential newsworthy events and information
[10,16]; (d) the addition of processes for continuously evolving
and adapting machine learning models, ontologies and schemas
[9]; (e) the integration of explainable sub-symbolic and sym-
bolic Al approaches [8]; and, (f) the control of data privacy and
provenance [18]. The research literature on JKPs has focused on
the application side and addressed different challenges for news
production. However, the authors are not aware of other lines of
work that have studied the architecture of JKPs specifically.

SRA for JKP. Researchers have proposed several software archi-
tectures that deal with big data in general [19-24], but few of

Knowledge-Based Systems 276 (2023) 110750

them deal with the central challenges that JKPs face and, to the
best of our knowledge, none of them deals with them all. For
example, the current big-data architectures are typically designed
for data analysis and immutable data, whereas the focus of JKPs
is on exploring and understanding knowledge that evolves over
time. In addition, few current big-data architectures consider the
integration of knowledge bases and Al in detail. Therefore, In this
article, we address the question: “What would be a good software
reference architecture for journalistic knowledge platforms?” We
propose a software reference architecture that addresses the cen-
tral challenges of journalistic knowledge platforms and integrates
artificial intelligence and knowledge bases to support journalists
and newsrooms. We also introduce two novel types of compo-
nents: one for continuously improving and updating Al models
and the other for curating knowledge representations. The first
component includes services to monitor data and schema changes
and update the models respectively. The second component scans
knowledge representations to enrich the content and rectify in-
consistencies or missing information. This architecture is the first
of its kind proposed for the systems described in this work.
Unlike existing big-data architectures focused on immutable data
and data analysis, the proposed architecture focuses on evolving
knowledge and analysing knowledge representations. The design
of the architecture is primarily grounded in the research litera-
ture but also relies on our practical experience with developing
a series of JKP prototypes in collaboration with the industry.
We believe the proposed architecture can be adaptable to other
domains with characteristics similar to news production.

In a previous publication [25], the authors have outlined a
preliminary version of an SRA for JKPs. The present article extends
the earlier outline in several ways: it presents the high-level
qualities that an SRA for JKPs must satisfy; it explains the archi-
tectural principles that guided the design; it describes a generic
architecture for big-data knowledge-based Al systems; it further
elaborates the description and argumentation of the SRA specific
to JKPs; and it compares the coverage of the proposed SRA for
JKPs with the research literature.

The remainder of the article is organised as follows: Section 2
defines our terminology and introduces SRAs, knowledge graphs,
embeddings and vector databases. Section 3 describes our re-
search method. Section 4 analyses the related literature. Section 5
outlines the high-level required qualities for an SRA. Section 6
presents the SRA for JKPs. Section 7 evaluates the proposed SRA.
Finally, Section 8 states our conclusions and plans for further
work.

2. Background
2.1. Central terms

By big-data technology we mean the recent generation of mid-
dleware that accommodate web-scale data processing and stor-
age. For example, the big-data technologies we use in our work
include Apache Kafka and Cassandra. By knowledge bases we
mean data repositories that maintain strong semantic definitions
of and links between the data. Our work focuses on knowl-
edge graphs, using techniques such as RDF, OWL and SPARQL,
and Blazegraph for storage. By Al we mean symbolic and sub-
symbolic techniques, including machine and deep learning for
tasks like natural-language processing. Examples of Al techniques
we use in our work are named entity linking, relation extraction
and inference rules. We also refer the reader to our previous work
on the usage of knowledge graphs for news [26] and our review
on JKPs [8] for further details on big data, knowledge bases and
Al techniques. We proceed to discuss a few other central terms
in more detail.

M. Gallofré Ocafia and A.L. Opdahl
2.2. Software reference architecture

A software reference architecture (SRA) “is a generic architec-
ture for a class of systems that is used as a foundation for the
design of concrete architectures from this class” [27]. It defines
the basic software elements and data flows and captures the best
practices for designing and implementing complex systems and
their functionalities.

Two types of SRAs can be distinguished: practice-driven and
research-driven [28]. Practice-driven SRAs are based on practi-
cal experience developing concrete architectures in a domain.
They describe the “best practices” and address legacy problems.
Research-driven SRAs address areas that are expected to become
important in the future but where there are few or no develop-
ment experiences yet. They are based on theoretical reflections
grounded in the research literature.

2.3. Knowledge graphs

Knowledge graphs provide symbolic representations through
concepts, relations and logic rules. According to [7], knowledge
graphs capture and abstract knowledge using graph-based data
models wherein entities of interest are represented as nodes and
the relations between them as edges of the graph. Ontologies
and rules are employed to define the semantics and terms of
the graph, reason about it, and ease data integration. Knowledge
graphs are particularly relevant for systems that integrate and
extract value from heterogeneous and dynamic data. They are
exact symbolic representations that do not require large amounts
of data to become meaningful. Their workings are easy to ex-
plain to humans, but managing large graphs efficiently can be
hard for computers. Compared to relational and NoSQL models,
knowledge graphs facilitate semantic integration, flexible data
and schema evolution, along with graph query languages for
exploring complex relations through arbitrary-length paths.

2.4. Embeddings and vector databases

Embedding techniques are used in machine and deep learning
to represent concepts as vectors in a latent space. Concepts can
be extracted from a wide variety of data from text, images, and
audio to sequences like DNA and molecular structures. Vectors
are generated through mathematical models and provide sub-
symbolic representations, positioning concepts in the embedding
space according to similarity or other relations. These vectors, as
sub-symbolic representations, have a stochastic component and
require large amounts of data to be meaningful. They are hard to
explain to humans, but even large collections of vectors can be
efficiently managed by computers.

Well-known techniques for word and text embedding are
word2vec [29] and transformers [30] like BERT [31] and, most
recently, GPT-3 [32]. These techniques are particularly relevant
for systems that exploit the semantic and contextual similarity
between data and used in many Al applications like natural
language processing, chatbots, image recognition, and recom-
mendation.

Storing large collections of vectors requires specialised
databases with optimised storage, access and search. Vector
databases are an emerging technology for storing and index-
ing vectors efficiently and provide functionalities for retrieving
vectors using similarity search algorithms like HSNW [33] and
FAISS [34]. Examples of vector databases are Milvus’!, Weaviate?
and Vald>.

1 milvus.io

2 weaviate.io

3 vald.vdaas.org

Knowledge-Based Systems 276 (2023) 110750

3. Method

To design and validate the SRA, we follow an established
method for designing empirically-grounded reference architec-
tures [35]. The method comprises six steps, where the initial five
steps provide the “empirical foundation” and the sixth provides
the “empirical validity” as illustrated in Fig. 1:

1. Decision on the 2. Selection of the 3. Empirical
type of SRA design strategy acquisition of data
6. Evaluation 5. l_inabl@g SRA
with variability

Fig. 1. Construction process of the SRA for JKPs.

4. Construction of
the SRA

Step 1 - Decision on type of SRA: We chose the preliminary
and facilitation type of SRA described in [27]. This is a
type of research-driven of SRA that aims to facilitate guide-
lines for designing systems and concrete architectures that
are likely to become important in the future and will
be utilised by multiple organisations. The guidelines are
designed by researchers in collaboration with interested
software organisations and grounded on existing research
literature and practical experience.

Step 2 - Selection of design strategy: We chose a research-
driven strategy because we expect JKPs to become increas-
ingly important in the future and we have not identified
a substantial number of industrial implementations and
experiences on JKPs.

Step 3 - Empirical acquisition of data: We carefully selected
13 research projects that matched our definition of JKPs
(see Section 4.1). A detailed, qualitative meta-analysis re-
view was presented in [8] to derive the challenges, oppor-
tunities, main stakeholders, information, functionalities,
techniques, components and concerns in JKPs. We also
drew on our practical experiences developing a series of
JKP prototypes with Wolftech?, a software developer for
the international newsroom market [36,37], and collabo-
rating with a large cluster of news media industry partners
in the MediaFutures research centre® [38].

Step 4 - Construction of SRA: Firstly, we identified the related
literature on JKPs and software architectures for big data
and semantic technologies (see Section 4). Secondly, since
we could not find a suitable architecture for JKPs, we
decided to propose a new SRA grounded on the specific re-
search literature, our practical experiences and the general
literature on architectural principles. From this, we derived
the main required qualities for JKPs (see Section 5) and
selected suitable architecture principles (see Section 6.1).
Thirdly, the required qualities were mapped into architec-
tural elements, such as components, functionalities, data
stores and data flows. These identified elements were then
further mapped into a high-level architecture view of the
SRA (see Section 6), guided by the architecture principles.
Finally, we instantiated the SRA as a proof-of-concept pro-
totype of a JKP (see Section 7), which we used to iteratively
improve the SRA.

4
5

wolftech.no
mediafutures.no

http://www.milvus.io
http://www.weaviate.io
http://www.vald.vdaas.org
http://www.wolftech.no
http://www.mediafutures.no

M. Gallofré Ocafia and A.L. Opdahl

Step 5 - Enabling SRA with variability: By iterating over the
SRA design and continuously developing and testing the
JKP prototype, we improved and refined the preliminary
design decisions reported in [25,37] concerning the archi-
tecture, components, principles and semantics. To facilitate
the adaptation of the SRA in other domains, we drew
insights from generic big-data architectures to identify
common characteristics shared by our SRA for JKPs and
big-data Al architectures. As a result, we propose a high-
level view of our architecture for JKPs that can potentially
be adapted to big data and Al systems in other domains.
We also show how the high-level view is refined into
our specific SRA for JKPs and further instantiated into our
prototype JKP. As JKPs are an emerging field and there
are not enough research results or experience available to
empirically back-up architecture variants, a more thorough
investigation of variability must be left for future work.

Step 6 — Evaluation of the SRA: Following the established
method for empirically-grounded SRA development [35],
we have evaluated our SRA proposal in two ways:

Mapping-based evaluations: To ensure fulfilment of the
required functional qualities for an SRA for JKP (Sec-
tion 5.2), we systematically mapped these qualities to
the architecture components (Table 3). Similarly, we
mapped the required non-functional qualities (Sec-
tion 5.3) to both architecture principles (Table 2) and
architecture component (Table 4). Finally, to ensure
that our SRA proposal accounts for the components,
functionalities and goals of JKPs reported in the ex-
isting research literature (Section 4.1), we system-
atically mapped them into architecture components
(Table 5).

Evaluations by prototype development and testing: We
have validated the viability of the high-level architec-
ture view (Section 6.2) by refining it into a concrete
SRA for JKPs (Section 6.3). Furthermore, we have val-
idated the feasibility of this concrete SRA for JKPs by
instantiating it into a running JKP prototype that has
been iteratively developed and tested (Section 7.2).

To construct and evaluate our prototype in Steps 4-6, we have
followed a design science approach [39], which “supports a prag-
matic research paradigm that calls for the creation of innovative
artefacts to solve real-world problems” [40]. Within the field of
information systems, design-science researchers often adopt an
iterative process comprising three different cycles [41], which
involve understanding the application context or environment,
studying and improving the theoretical framework, and evaluat-
ing the artefacts [42]. Accordingly, we have iteratively designed
and validated our SRA for JKPs by developing and refining arte-
facts informed by the relevant literature, while considering the
contextual environment of both developers and users.

4. Related literature
4.1. Journalistic knowledge platforms

Several JKPs have been proposed in the research literature.
We summarise the projects we have identified, along with their
industry partners, in Table 1. We can broadly categorise them
into two groups: the earlier JKPs (until around 2010), which
primarily focused on implementing the Semantic Web idea [43]
within newsrooms, and the more recent JKPs (after 2010), which
combined semantic technologies [44] with machine- and deep-
learning approaches.

Knowledge-Based Systems 276 (2023) 110750

The earlier JKPs employed semantic technologies and on-
tologies to automate the metadata annotation process, combine
different knowledge bases, and formalise media standards. They
used ontologies in NLP pipelines, together with LOD, to au-
tomatically annotate news archives and feeds with metadata
about topics, keywords, categories and other relevant information
(e.g., persons, places, organisations, sentiments and relations).
For example, PlanetOnto [45] focused on providing a knowledge
management system to provide personalised semantic retrieval
and search in news archives. Neptuno [47] developed tools for cre-
ating, maintaining and exploring news archives. AnnoTerra [48]
proposed a prototype for integrating earth science data sources
to enhance news feeds from NASA’s Earth Observatory using
knowledge bases. SemNews [49] focused on automating metadata
annotation for semantic search and monitoring of RSS feeds.
Hermes [59] proposed a framework for searching and classify-
ing news to support decision-makers. The BBC used knowledge
graphs and LOD to link information across news articles, en-
rich their Content Management System (CMS) and recommend
news [9,51]. NEWS [13] automatised the metadata annotation
of news and images and provided news intelligent information
retrieval services using semantic technologies.

More recent JKPs focused on identifying and analysing events
and advancing machine and deep learning for supporting journal-
ism. A common thread among them, and some of the earlier ex-
amples, was that they deal with big data. EventRegistry [15] devel-
oped a tool for collecting news articles from around 75.000 multi-
lingual sources, identifying and extracting information about the
events, and summarising and visualising events from close to
200.000 articles daily. NewsReader [16] presented a platform for
machine reading of multilingual streams of news and extracting
information about what, who, where and when for representing
events temporally using knowledge graphs, for example allowing
users to find networks of actors and their implication over time.
The platform was tested on nearly 2.5 million news articles and
extracted over 1.1 billion triples from these articles. Reuters [55,
56] developed a real-time platform to analyse around 12 million
tweets per day from Twitter to identify and verify newsworthy
events before they are reported by other news agencies and
automate news production processes. SUMMA [3] developed a
multilingual and multimedia platform employing NLP techniques
for monitoring internal and external live media, including TV
and radio broadcasts, and providing services for data journalists.
INJECT [58] developed a tool to support journalists by providing
creative angles on news stories. ASRAEL [10] presented a system
for aggregating news articles and utilising the Wikidata knowl-
edge base for describing and clustering events in news from a
corpus of over 2 million articles.

Typical problems faced in these projects are: huge volumes of
heterogeneous data, some of them arriving in real time [3,15,16];
complex processing pipelines that combine NLP, machine learn-
ing and knowledge representation [10,15,16]; and integration
of legacy and external systems [9,13]. These are problems that
typically call for architectural guidance.

4.2. Software architectures for big data and semantic technologies

According to existing big-data architecture reviews [19-24],
only four architectures for big data [19,23,60,61] have considered
semantic technologies. LMS [60] was designed for providing a
middleware for sensor data and the Internet of Things (IoT).
SOLID [61] adapted the principles of the Lambda processing ar-
chitecture [62] to RDF for gathering, storing and serving big
data in real time. Bolster [19] extended the Lambda architecture
by adding a new semantic layer to represent machine-readable
metadata, contrary to JKPs that represent the data semantically.

M. Gallofré Ocafia and A.L. Opdahl

Knowledge-Based Systems 276 (2023) 110750

Table 1

Selected projects. N = news media partner and T = technology partner.
Project Industry partners References
PlanetOnto - [45,46]
Neptuno Diari SEGREN and iSOCO" [47]
AnnoTerra NASA’s Earth Observatory [48]
SemNews - [49]
Hermes - [50]
BBC CMS BBCN [9,51]
NEWS Agencia EFEN, Agencia ANSAN and Ontology Ldt.” [13,52]
Event Registry - [15]
NewsReader LexisNexis", The Sensible Code Company (before ScraperWiki)" and Synerscope” [16,53]
Reuters Tracer ReutersM [54-56]
SUMMA LETAN, BBC Monitoring", Deutsche WelleM and Priberam Labs’ [3,57]
INJECT Adresseavisen™, AFPN, The Globe and MailV, Stibo" [58]
ASRAEL AFPN [10]
News Angler? Wolftech” [25,36]

2News Angler is the research project in which the authors are involved.

SmartLAK [23] focused on supporting learning analytic services
and defines components for validation and inference based on on-
tologies. However, none of them covers mechanisms for semantic
data enrichment, continuously pushing live data streams, or con-
tinually (re-)training machine learning models. Four proposed
architectures [63-66] have considered maintaining and updating
ML models and defined specific components for storing and train-
ing them, but none of them considered semantic technologies
like knowledge graphs and ontologies. Furthermore, none of the
existing architectures considers the curation of knowledge repre-
sentations. In conclusion, none of them is a suitable starting point
for an SRA for JKPs.

5. Required qualities for the SRA
5.1. Approach

To drive the design and evaluation of our SRA, we systemat-
ically derived the required high-level qualities from earlier JKP
projects reported in the literature and our previous studies [8,18].
We used the most recent JKPs to derive the qualities, while the
earlier JKPs provided supplementary insights to support and aug-
ment these qualities. We divided the JKP qualities into functional
(i.e., specific behaviours that the system must implement) and
non-functional (i.e., general properties of the system). In addition,
we identified the required general qualities for any SRA from
the literature [27,67], i.e., being feasible, representative, essential,
easy to grasp, long-lasting and technology independent. The de-
rived qualities are also corroborated by the current literature on
big data architectures [21,22,24] and Al systems [5], as well as
they align with quality attributes of ISO/IEC 25010 [20].

5.2. Required functional qualities

Annotating To better manage, analyse and derive knowledge
to support journalists in creating high-quality stories, JKPs
must annotate content with relevant information such as
people, organisations, places, relations, categories, themes
and other metadata [3,15,46-50,55,58]. JKPs use semantic
annotations to facilitate the representation of the meaning
of concepts and relations, standardise annotations using
well-defined schemas and ontologies, and improve relation
and concept mining [9,10,13,16].

Knowledge-representation JKPs are knowledge-centric sys-
tems that provide knowledge representations of news,
events and background information and the relations be-
tween them [3,9,10,15,55,58]. Most of the JKPs are focused

on exploiting the relations and connections between in-
formation. Hence, JKPs must employ systems that facili-
tate working with relations and updating the knowledge
representations [13,16,46-50].

Enriching JKPs must implement mechanisms to update and
expand the extracted information. Because the informa-
tion can change over time (e.g., a newly elected head of
a government) and some other information may not be
completed (e.g., an article referencing a country instead
of the city where an event took place), journalists need
to constantly have access to up-to-date and fine-grained
information to produce high-quality journalism [3,9,10,13,
15,16,46-50].

Schema-evolution As novel developments and themes may
appear, JKPs must facilitate schema evolution [13,16,46-
50]. To do so, the technologies used to represent and store
schemas must provide flexible and easy mechanisms to
update them.

Model-updating Al models must be constantly updated to fol-
low new information and news development [13,15,46,55].
JKPs must implement mechanisms for continuously evolv-
ing ML models to provide state-of-the-art results and adapt
them to new events and users’ needs.

Storage JKPs deal with a variety of data and representation
formats [3,9,10,13,15,16,46-50,55,58]. They need to access
information in different ways, for example, obtaining most
recent feeds in real-time, reading data in bulk, retrieving
historical data and finding similar texts. Therefore, JKPs
must employ different databases for specific purposes to
optimise storage and access.

Push JKPs must continuously push potentially newsworthy
events to journalists [3,13,46-49,55]. This is achieved by,
for example, sending feeds or alerts to journalists according
to their preferences or current work.

Pull JKPs must provide services for pulling information from
the knowledge base [3,9,10,13,15,16,46-50,55,58]. These
services typically require direct interaction with the user
to search information.

Data-ownership Stories generated with the support of JKPs are
disseminated to a broad or even worldwide audience and
the information resources need to be protected as they may
be subject to ownership and usage policies [13,48]. JKPs
must keep track of these policies and their implications,
especially when information is merged or derived from
multiple sources.

M. Gallofré Ocafia and A.L. Opdahl

Privacy Merging and connecting information from different
sources and social media can lead to data privacy chal-
lenges [18]. Hence, JKPs must implement mechanisms to
monitor potential data privacy violations.

Provenance Information about the source from where the in-
formation has been derived helps journalists to assess the
quality of news and find its origins. In addition, metadata
about the process and version that gathered, modified or
updated the information facilitates the traceability of the
process and detection of errors [13,16,48]. Thus, JKPs must
facilitate keeping track of the metadata associated with the
information sources and processes.

5.3. Required non-functional qualities

Interoperability JKPs interoperate with heterogeneous in-
house legacy systems, external services and other JKPs
[3,9,10,13,16,46-49]. To do so, they need to provide clear
meaning and data representations, as well as use standard
formats, interfaces and exchange protocols.

Modularity JKPs must be able to incorporate future compo-
nents that replace existing ones [9,13,16,48]. This guaran-
tees the addition of new components to adapt the JKPs to
particular users’ needs and update them with future best-
of-breath solutions. Hence, the implemented components
need to be independent, modular and abstract.

Scalability To deal with large volumes of news-relevant in-
formation and sources, JKPs must employ tools and storage
systems designed to increase to, efficiently support and
uniformly process big data volumes [3,9,10,13,15,16,47,55].

Velocity JKPs support news production where time is a
critical factor and delays can lower the value of informa-
tion. News-relevant information is rapidly and continu-
ously produced and broadcast worldwide [3,16,47,55]. JKPs
must obtain this information, process it, analyse it, and
make it available as soon as possible to maximise its value.

Variety News-relevant information is produced and broadcast
as unstructured and structured data [3,9,13,16,47,48]. It
comprise diverse modalities of data like audio, video and
images, structuration principles like tables and graphs,
time cycles like live and historic, and formats like plain
text, RDF and JPEG. Therefore, JKPs must be able to ingest,
process and store varied data consistently.

Knowledge-evolution As the world is constantly evolving,
current events and developments become past and are
preceded by new ones [13,15,50]. Therefore, JKPs must
implement components that can adapt their behaviour in
response to emerging entities, events and relations along
with new terms and their meaning.

Sub-/symbolic-AI JKPs integrate sub-symbolic and symbolic
techniques. This integration benefits both approaches: sub-
symbolic techniques may be enhanced with logic and rea-
soning from symbolic Al, and symbolic Al may be sped up
with sub-symbolic techniques [6,68]. To support this inte-
gration, JKPs must facilitate both symbolic representations
like knowledge graphs and ontologies and sub-symbolic
data like models and training materials.

Trustworthy-AI As JKPs support journalists in creating sto-
ries that may effect society, journalists need to trust the
system [9]. Hence, following the European guidelines on
Al [69], JKPs must allow journalists to take informed deci-
sions, ensure data privacy and integrity and provide trans-
parent, traceable and explained solutions.

Knowledge-Based Systems 276 (2023) 110750
5.4. Qualities addressed by the JKP projects

In Appendix we trace from which projects each quality has
been derived (see Tables A.6 and A.7). The analysed projects ad-
dressed qualities primarily related to the technical and research
challenges such as Annotating, Knowledge-representation,
Enriching, Schema-evolution, Storage, Push, Pull,
Interoperability, Scalability and Variety. Only a lim-
ited number of projects addressed qualities that support the val-
idation of the newsroom production such as Data-ownership
and Provenance. Despite early examples of Model-updating in
the earliest projects, advances in machine learning increased its
relevance in the newer projects, while Sub-/symbolic-AI re-
mains unexplored. The rise of web-scale volumes made Veloc-
ity relevant. Earlier projects explicitly addressed Modularity,
which newer projects achieve implicitly through technological
decisions. Few projects considered the Knowledge-evolution
as opposed to static knowledge. Privacy has not been ad-
dressed by any project, despite its importance for complying with
regulations such as the GDPR. Trustworthy-AI, relevant for
providing safe systems and understanding their outcomes, was
only addressed by one project. We particularly emphasise on the
underrepresented yet relevant qualities for future systems.

6. Software reference architecture for JKPs
6.1. Architectural principles

We propose a set of architectural principles for the SRA for
JKPs. These principles are composed of different architectural pat-
terns and technologies that we consider the most appropriate to
fulfil the elicited high-level non-functional qualities as illustrated
in Table 2.

Microservice architecture pattern. Microservices is an architec-
tural pattern for applications where every functionality is
deployed as its own service and often independent from the oth-
ers [70]. Components in a microservice system are self-contained,
loosely coupled, technology neutral, reusable and specialised.
They typically communicate via clear APIs. These characteristics
facilitate components replacement, integration, scaling and dis-
tribution. This pattern is an ideal candidate for an SRA for JKPs
as it provides Interoperability and Modularity by design.
Components designed following the microservice architecture
principles can (a) be easily deployed, integrated and updated
because they have clear boundaries and minimal technological
dependencies on other components; (b) be dynamically repli-
cated to meet specific processing loads; and, (c) be utilised
independently or in collaboration with other components to fulfil
business functionalities. Solutions like Docker® containers can be
used to improve the availability, Scalability, replaceability
and deployment of microservices.

Liquid architecture pattern. Liquid architecture [71] is an archi-
tecture pattern for integrating nearline and offline big-data pro-
cessing with two distinguished layers: the processing and the
messaging layer. The processing layer executes ETL-like jobs for
different back-end systems. The messaging layer follows a topic-
based publish/subscribe communication model where streams of
incoming messages are identified by topics. Jobs can read from
selected topics and output to new ones. Messages can contain
metadata annotation such as timestamps that are used to pro-
vide stateful and incremental processing. Each job is an isolated
resource that may perform several tasks and communicate with
other jobs, creating a dataflow processing graph. Compared to

6 www.docker.com

http://www.docker.com

M. Gallofré Ocafia and A.L. Opdahl

Knowledge-Based Systems 276 (2023) 110750

Table 2

Connection between non-functional qualities and architecture principles.

Microservices Liquid Blackboard Semantic technologies

Interoperability v v
Modularity v v
Scalability v

Velocity

Variety v
Knowledge-evolution v v
Sub-/symbolic-AI v v
Trustworthy-AI v

the well-known Lambda [62] and Kappa [72] architectures, Lig-
uid does not duplicate the code, as opposed to Lambda; and, it
does not need to reprocess the current data view to run batch
jobs, as opposed to the Kappa. Unlike other architecture patterns
like Phi [73] that offer similar benefits, Liquid provides resource
isolation and incremental data processing, as well as it removes
the need for duplicating the data for downstream processing.
The Liquid architecture pattern is an excellent candidate for an
SRA for JKPs, because it is designed for meeting the Scalabil-
ity and Velocity requirements of big data, and reduces the
development, maintenance efforts and hardware demands [71].
Event-streaming solutions like Apache Kafka’ can be employed to
implement the message layer.

Blackboard model. The blackboard model is a problem-solving
approach to solve complex problems where different kinds of do-
main knowledge and expertise are needed [74]. In a blackboard-
based system, independent components cooperate to solve prob-
lems using a shared knowledge base (viz., the blackboard) [75].
These components activate when there is a change in the knowl-
edge base or an event that meet a certain condition. They may
also modify the knowledge base to contribute towards the so-
lution. The behaviour of these components depends on the cur-
rent state of the knowledge base and adapts as the knowledge
evolves. This increases the response of the components of JKPs
to Knowledge-evolution. As components cooperate to solve
a problem by sharing resources or preliminary solutions, com-
ponents can use the output of a sub-symbolic method to build
on a symbolic one or vice versa. Hence, the blackboard model
facilitates the integration of Sub-/symbolic-AI.

Semantic technologies. Semantic technologies encompass tech-
nologies and standards in the context of the Semantic Web [43]
that deal with the meaning of the data rather than its struc-
ture [44]. They are designed to represent entities, their relation-
ships and attributes using well-defined ontologies, and optionally,
logic rules. Semantic technologies are commonly used to con-
struct knowledge graphs and integrate LOD [7]. Software archi-
tectures of JKPs implementing semantic technologies may benefit
from (a) language neutrality and clear representations of data and
meaning to improve Interoperability and Modularity be-
tween systems and Variety of sources and data formats; (b) LOD
sources that constantly update their knowledge bases like DBpe-
dia and Wikidata to improve Knowledge-evolution; (c) using
knowledge graphs to facilitate Trustworthy-AI by improving
explanations, for example, by exposing connections and relations,
providing context and showing semantic similarities [76]; and,
(d) the symbolic representations that these technologies provide
to enable Sub-/symbolic-AT integration.

7 kafka.apache.org

6.2. High-level view

Fig. 2 proposes a high-level SRA for journalistic knowledge
platforms, which implements the architectural principles. The
architecture is centred around the knowledge base and includes
four types of components. The Knowledge Base manages all the
information needed to operate the system, including data stores,
knowledge representations, schemas, ontologies, metadata, and
even Al models which are provided and deployed as a service
to facilitate their access and integration in the architecture. The
knowledge base utilises unique identifiers, such as IRIs, to ensure
consistent representation across services. This eases the integra-
tion of knowledge representations and vectors from Al models,
as they share the same identifiers. To integrate the knowledge
base with the rest of the system, the system is designed follow-
ing the blackboard model, where the knowledge base is placed
in the centre of the system and communicates bi-directionally
with the other components. The Input components collect and
analyse relevant information from outside the platform and store
it in the knowledge base. The Output components provide ser-
vices to push relevant information to users and let users pull
information from the knowledge base on demand. The Learner
components employ continuous-learning techniques to keep the
ML/DL models, ontologies and schemas up to date. The Curator
components maintain and improve knowledge base contents. The
principal difference between the Learner and the Curator is that
the Learner is focused on improvement at the type or meta level,
whereas the Curator is focused on the instance or production
level. For example, the Learner may include services for auto-
matic re-training of ML/DL models or semi-manual update of
the schema and ontology. The Curator services deal with knowl-
edge fusion and enrichment tasks such as addressing knowledge
contradictions, updating knowledge representations based on ex-
ternal knowledge bases like DBpedia, merging similar knowledge
representations, and controlling potential privacy violations as
the ones described in [18].

Learner
- o
= Knowledge _E,
£ Base =
-

Curator

Fig. 2. High-level view of the architecture.

http://www.kafka.apache.org

M. Gallofré Ocafia and A.L. Opdahl

To facilitate machine-readable and understandable data, all
components utilise semantic descriptions to represent and de-
scribe the content, thereby reducing ambiguities and facilitating
integration and communication. Furthermore, to guarantee to
ensure traceability of every piece of information back to the
generating process, every service of the SRA maintains Prove-
nance information. Our proposed architecture goes beyond the
existing big-data architectures in the literature, as it explicitly
incorporates components like the Curator and Learner, providing
clear pathways for their inclusion.

6.3. SRA for JKPs

Fig. 3 illustrates the SRA for JKPs in more detail. While the
high-level view in Fig. 2 may apply to other knowledge-based
domains, this architecture is specific to news work. To align with
existing literature on JKPs and enhance comprehension, we have
renamed the components of the SRA accordingly, providing a
nomenclature that reflects their most common intended pur-
poses. We also decided to split the Output component into a
Feeder and a Retriever to differentiate between the Pull and
Push types of interaction in JKPs. As a result, the SRA for JKPs
is composed of six groups of components, namely, the Ingestor,
Knowledge Base, Curator, Learner, Feeder and Retriever, each con-
sisting of several microservices. A less refined version of the ar-
chitecture was presented in [25], which did not consider, among
other things, explicit components for training and updating Al
models and schemas nor the Current Window and Vector Store
of the Knowledge Base.

Learner £]
Model Schema
[Updater [} Updater
e
Lt Feeder)
K B |
Ingestor ® nowledge Base . e -
li_IHar ester == Lifter £ Current | L3 Vector [Stories | CJ Tracker
A -
r_\LI l_TL] EF| Window EFI Store
%Translator % Filterer | -1 Source Knowledge Retriever Eil
Archive Siaply ™ Knowledge Query
I l T CJ Browser Engine
Y1
Curator]

---» Information flow
— Trigger direction

Enricher ey
O =) Detector

Licensing Privacy

Manager Manager

Fig. 3. The SRA for JKPs (represented with ArchiMate 3.1 notation).

6.3.1. Ingestor

The Ingestor collects and Annotating potentially
news-relevant information items such as news articles and so-
cial media messages, multimedia files and structured data from
online sources. The most relevant components are the Harvester
and the Lifter. The Harvester continuously downloads and in-
gests scheduled and real-time news-relevant items from sources
like RSS, APIs and websites. To handle data Variety, multi-
ple harvesters can be deployed, each of them targeting specific
sources or data formats. The Lifter annotates and transforms
these news-relevant items into Knowledge-representations
using semantic technologies and Al techniques before they are
uploaded to the Knowledge Base. The resulting knowledge rep-
resentations can be using RDF and predefined ontologies, such as
the Event Description Ontology [77]. Ontologies must be designed
general enough to facilitate Schema-evolution and Interop-
erability between services. Lifters are composed of different Al
modules specialised in different tasks (e.g., named entity recog-
nition and face recognition), which are designed to be replaced
or extended (Modularity) to follow the state-of-the-art [12]. To

Knowledge-Based Systems 276 (2023) 110750

combine the results from the different Al modules and improve
data Interoperability, these can use vocabularies for repre-
senting annotations like NLP Interchange Format (NIF) [78] or
NLP Annotation Format (NAF) [79]. Each annotation must provide
information about its quality (e.g., accuracy and support values),
the Provenance to trace back to the source and process that
generated it, the Data-ownership and the terms of use.

Additional services like the Translator and Filterer can be
added to pre-process and clean the collected news-relevant items.
For example, the Translator service can be utilised for translating
the text into a canonical language, while the Filter can handle
tasks like normalising data types, standardising formats, and
filtering out advertisements. In some cases, it may be necessary to
employ other services that can group micro-texts, such as Twitter
messages, into chunks of similar messages, enabling them to be
processed collectively. These micro-texts may not be relevant
enough on their own, but they may turn relevant when analysed
together or when many similar texts occur at the same time or
within the same location.

As a result, the Ingestor performs the real-time transforma-
tions once and near the source before they are stored in the
Knowledge Base, and processed further by the Feeder and Cu-
rator. As this provides both the raw data and knowledge repre-
sentations from the beginning, it facilitates the deployment and
integration of Sub-/symbolic-AI approaches. By processing the
data near the sources, we also avoid software and data duplica-
tion, reducing the computational resources needed to deploy the
platform. Hence, this can have an impact on the overall power
and resource utilisation.

6.3.2. Knowledge base

The Knowledge Base provides persistent Storage and is com-
posed of multiple specialised databases for different data, includ-
ing raw files, metadata, Knowledge-representation, schemas,
ontologies, vectors and ML/DL models. The use of IRIs facilitates
data identification across databases and provides Provenance.
The usage of specialised databases is encouraged to optimise
data storage as they can efficiently manage specific types of
data and perform better on certain types of queries and work-
loads. For example, by only storing the knowledge representa-
tions in a knowledge graph and storing the raw data text in a
different database, we can reduce resource utilisation associated
with knowledge representations and improve performance when
exploring relationships between concepts.

The Source Archive can be composed of multiple databases
for managing a Variety of raw files such as text and mul-
timedia files. The Knowledge Graph stores the knowledge and
schema representations. It represents news-related knowledge
and provides a historical data view that can be updated to cap-
ture Knowledge-evolution and Schema-evolution. Seman-
tic technologies like RDF and triple-store databases facilitate both
the Knowledge-evolution and Schema-evolution because
they provide flexible data representations and natural integra-
tion with linked data. The Knowledge Graph is used as a hub
to provide Interoperability with the different repositories
and integrate legacy archives as it can be used to manage data
lakes [80]. The Current Window provides a live and dynamic
view of the most recent data and knowledge representations
coming from the Ingestor, Curator and Retriever. It must provide
real-time responses and support streaming operations. Many ma-
chine and deep learning solutions are often based on embedding
techniques for representing the meaning of, for example, text,
graphs and images. The Vector Store stores these embeddings in
vector databases. Vector databases facilitate the availability and
search of vectors, reduce the need for re-computing them and
provide similarity functions that can be used to optimise infor-
mation retrieval. Some vector databases offer the possibility of

M. Gallofré Ocafia and A.L. Opdahl

storing the metadata associated with the vector (e.g., if multiple
news-relevant items have been used to generate the vectors,
we can add their IRIs as metadata). This can enhance the level
Trustworthy-AI on JKPs, as it allows for more explainable Al
by providing Provenance to the vector representations and their
resulting outcomes. At the same time, interlinking all databases
and vector representations with IRIs simplifies data collection and
generation for solutions that integrate Sub-/symbolic-AI and
update ML/DL models.

These storage services must handle large volumes of data,
intensive write and read operations in real-time (Velocity),
and horizontally scale (Scalability). For example, distributed
databases like Apache HBase® and Cassandra® can store large data
volumes. Although many of the open-source graph databases and
triple stores with support for RDF and SPARQL do not provide
support for scaling horizontally, some of them can hold more
than one billion (10°) triples [81] (e.g., Blazegraph'® and Jena
TDB'!). Strategies like partitioning the graph databases accord-
ing to resource types/predicates, temporal aspects, themes and
geolocations, or a combination of these can be employed for
distributing graph databases.

6.3.3. Curator

The main purpose of the Curator is to make the Knowledge
Base as useful as possible for journalistic purposes. The Enricher
enhances Knowledge-representation using external informa-
tion from the LOD (e.g., Wikidata). It enriches the Knowledge
Graph by adding linked data retrieved from the LOD cloud to
expand the represented news-relevant information and events
(Enriching) and updates or corrects them following the latest
advances (Knowledge-evolution). The Privacy Manager mon-
itors incoming data to identify and propagate prohibitions, per-
missions, obligations and violations [18] and outputs alerts that
need to be rectified by the user. The Licensing manager controls
the data copy-rights and licensing in the Knowledge Base. For
example, when different permissions are merged, the licensing
manager maintains data usage obligations and restrictions, iden-
tifies the Data-ownership conflicts and adds the corresponding
missing information.

Additional services can be added to analyse news-relevant
information and events and produce newsworthy information for
journalists. For example, the Event Detector detects newsworthy
events from social media and other sources. An aggregator ser-
vice can incrementally relate and cluster news-relevant items
into more comprehensive and reliable event representations or
storylines. A network analyser service can identify and analyse
different types of connections between actors and their relations
with the events. An angle detector service can derive the news
angles that fit an event [17,82]. An analogy service can find analo-
gies between different news-relevant items [83]. The Curator can
also contain services to provide explanations of the Al results to
users (Trustworthy—-AI).

6.3.4. Learner

The Learner provides services to keep the Al models and
schemas up-to-date. The Model Updater uses continuous-learning
techniques such as incremental or online training approaches
to improve those models that depend on the frequency and
context of words and entities or user preferences. The process of
Model-updating can be triggered when a significant frequency
of an unknown word/entity is detected to incorporate it into the

8 hbase.apache.org
9 cassandra.apache.org
10 www.blazegraph.com
1 jena.apache.org

Knowledge-Based Systems 276 (2023) 110750

model (e.g., the first mentions of “COVID-19”), use the informa-
tion from the last week to evolve the model (e.g., after unveiling
a corruption case some politicians should be placed closer to
the corruption theme), or adapt the recommendations following
the current work of a journalist (e.g., when the journalist starts
working on a new story). To generate training materials, the
Model Updater can access the stored data in the Knowledge Base
and the latest version of external repositories such as Wikidata
and Dbpedia or the most recent and current events in the Current
Window. The resulting updates can be stored in the Vector Store
or change the models used by other services, creating a new ver-
sion of the model. The Schema updater evolves current schemas or
mappings like themes or categories to include newer elements or
remove obsolete ones based on the incoming or on-demand data
(Schema-evolution).

6.3.5. Feeder

The Feeder monitors streams of linked data coming from the
Current Window to Push live information to journalists. It con-
tinuously pushes newsworthy feeds and alerts based on users’
preferences. For example, the Emerging Stories service can be im-
plemented to identify live stories that are gaining attention from
various publishers or social media platforms, and a Story Tracker
to push stories that are related to the current journalists’ work.
As the Feeder is intended to push information to journalists as
soon as it is captured or generated, it improves the Velocity of
information transmission and discovery and reduces delays. The
Feeder implement end-points where other services can connect
to get live feeds and alerts (Interoperability).

6.3.6. Retriever

Retriever allows users to Pull information from the JKP on
demand. For example, the Query Engine facilitates querying and
analysis of data from the knowledge base, generating data visual-
isations, access to taxonomies, and retrieval from news and mul-
timedia archives. It can provide an end-point with pre-packaged
queries for particular purposes, like finding news stories related
to a particular person and retrieving relevant information for
a given event. The Knowledge Explorer provides access to back-
ground and related information from external sources. Additional
services can provide tools such as currency and time converters,
related story retrieval, and suggestions to enhance news stories,
including news angles. These services are also exposed as API to
allow external users and systems to pull information from the JKP
(Interoperability).

7. Validation

As explained in the Method section, we have validated our
proposed SRA in two ways: (1) by mapping between each of
the required qualities from Section 5 and our SRA; and (2) by
iteratively developing and testing a prototype implementation of
the SRA.

7.1. Mapping

We established mappings to verify that the proposed SRA
fulfils all the required qualities. To do so, we examine which
components contribute towards each quality and how.

http://www.hbase.apache.org
http://www.cassandra.apache.org
http://www.blazegraph.com
http://www.jena.apache.org

M. Gallofré Ocafia and A.L. Opdahl

Knowledge-Based Systems 276 (2023) 110750

Table 3
Mapping between functional required qualities and components.
Functional quality Ingestor Knowledge Base Curator Learner Retriever Feeder
Annotating News items
annotation
Push Feeds and alerts
Pull Query on demand
Model-updating Learning
techniques
Enriching LOD addition
Knowledge- News items to LOD addition
representation graphs
Storage Persistent
databases
Schema- Schema updates
evolution
Data-ownership Terms-of-use Terms-of-use
metadata monitoring
Privacy Data privacy
monitoring
Provenance Tracing metadata IRI Tracing metadata Tracing metadata Tracing metadata Tracing metadata

Table 4

Mapping between non-functional required qualities and components.

Non-functional quality Component Principle

Interoperability Microservices, Semantic Tech.

Modularity Microservices

Scalability Liquid Architecture, Microservices, Blackboard Model
Velocity Feeder Liquid Architecture

Variety Ingestor, Knowledge Base Blackboard Model, Semantic Tech.

Knowledge-evolution Curator, Learner
Sub-/symbolic-AI

Trustworthy-AI Curator

Blackboard Model, Semantic Tech.

Functional qualities:. To validate that all required functional qual-
ities (Section 5.2) are covered by the SRA, we mapped them
to the architecture components. Table 3 shows the components
responsible for providing or realising each functional quality and
highlights the key aspects that support it. Certain qualities may
be associated with multiple components.

As shown in Table 3, the SRA defines Ingestor components for
Annotating news items and transforming them into
Knowledge-representations, which are enriched in the Cu-
rator with LOD. It also defines components such as the Feeder
to Push live feeds and alerts and the Retriever to Pull infor-
mation on demand. To keep ML/DL models and schemas up-to-
date, the SRA defines the Learner that employs different learning
techniques to evolve them. The news-relevant information is
persisted in specialised databases in the Knowledge Base. To
keep track of Data-ownership, the Ingestor adds terms-of-use
information to each news item and the Curator monitors them, as
well as, potential Privacy violations. All components add tracing
metadata to provide Provenance and utilise IRIs to facilitate
identification across services.

Non-functional qualities:. The non-functional qualities
(Section 5.3) depend on the architectural principles, the devel-
opment decisions and specific components, as shown in Ta-
ble 4. To achieve Interoperability, the SRA is based on
semantic technologies and vocabularies, schemas, linked data
and open standards. These technologies provide language neu-
trality, formal data representations, open definitions and clear
Knowledge-representation. This brings data understanding
at a conceptual level and facilitate data integration and fusion.
To achieve Modularity, the SRA is based on microservice
principles. The different components must have clear functional

10

boundaries, so they can be deployed independently and inter-
act between them effortlessly. This facilitates the replacement
and addition of new components without affecting the current
ones or modifying them. Well-defined boundaries also facilitate
communication with external users.

The data ingestion part of the SRA is inspired by the Liquid
architecture and microservice principles to handle big data Scal-
ability and Velocity needs. The Liquid architecture combined
with microservices offers a development pattern for designing
scalable systems. The annotation components are built upon the
blackboard model which is designed for parallel processing and
ease scalability. Data Variety can be handled by adding new
processes to the Lifter for the different types of data and formats.
To combine different types of data and annotations, the SRA for
JKPs uses semantic technologies to represent them. In addition,
the SRA is designed with a knowledge base that can integrate
specialised databases for the different types of data. In addition,
the SRA enhances the response time with components like the
Feeder.

We designed the SRA with the Curator and the Learner com-
ponents to manage the Knowledge-evolution. The Curator
contains services for maintaining and improving knowledge rep-
resentations using external and internal knowledge. While the
Learner contains services for updating the ML/DL models to adapt
knowledge extraction and representation to current develop-
ments.

The integration of Sub-/symbolic-AI is accomplished by
using the blackboard model and semantic technologies. The SRA
makes the source data and its symbolic and sub-symbolic rep-
resentations available in the knowledge base, while it keeps the
involved concepts aligned using IRIs. This allows the design of
solutions that can exploit both types simultaneously.

M. Gallofré Ocafia and A.L. Opdahl

Table 5
Mapping between architecture components and projects.

Knowledge-Based Systems 276 (2023) 110750

Project Ingestor Knowledge Base

Curator Learner Retriever Feeder

PlanetOnto
Neptuno
Annoterra
SemNews
Hermes

BBC CMS
NEWS

Even Registry
NewsReader
Reuters Tracer
SUMMA
INJECT
ASRAEL

S S S S S N S S S S
S S S S S S S S RSN

A S S O S S S S

A S S S S S S S RS
<<

LKL

We designed the SRA to favour Trustworthy-AI through
services that control Privacy and Data-ownership, provide
Provenance and enhance explainability through the usage of
semantic technologies and symbolic representation.

Comparison with existing JKPs. Finally, to validate that our pro-
posed SRA is able to account for all the elements of the various
JKPs reported in the literature (Section 4.1), we have reviewed
them carefully and mapped their elements into the corresponding
parts of our SRA, as shown in Table 5. Because many of the
analysed projects built pipeline-based systems with little archi-
tectural description, the elements we mapped were sometimes
suggested solutions and processing steps based on their goals and
functionalities. We managed to map all the related JKPs into our
SRA which indicates that our proposed SRA for JKPs is able to
account for existing JKPs reported in the research literature.

7.2. Prototype
In order to evaluate the feasibility of our proposal, we de-

veloped a prototype platform that instantiates the SRA for JKPs
(Fig. 4).

Learner £]
Schema
Updater

i T

1y Feeder £l

Knowledge Base g -

o) — News Emerging
liggesior | — Current Vector Feeds Stories
Harvester L Lifter EJ Window | B3 _Store
- - Lo—sf Retriever 1
le—— Source Knowledge | | __,J
[Archive |3 Graph N Query
- T F l T Engine
ap L
) n ‘,‘,) Curator]
DBpedia -~
KIPEDIA
Angler Event
" GeoNames II I I [Detector | [Detector zdocker
Enricher
WIKIDATA =]

Fig. 4. The instantiated architecture for the JKP prototype.

Ingestor. We implemented the Ingestor with services for Har-
vesting and Lifting. Our Harvester crawls news-related web-
sites and harvests RSS feeds, Twitter accounts, NewsAPI'? and
GDELT 3. The Twitter API provides real-time tweet streams from
specific accounts, geographical areas or topics. NewsAPI aggre-
gates and provides streams of news articles from over 80000
news sources and blogs. GDELT provides semi-structured infor-
mation about conflict events, collected from news all around the
world and automatically translated into English from 65 different

12
13

newsapi.org
www.gdeltproject.org

11

languages. We observed that RSS support is declining among
news organisations. This makes aggregation services like News-
API and GDELT a solid alternative to consider, as they provide
access to a larger number of news sources. We also observed
that data from news organisations’ and journalists’ Twitter ac-
counts cannot be used straightforwardly as many messages only
provide links to news articles or little information. Hence, these
messages need to be aggregated in chunks of information before
they are processed and the information from the links must be
downloaded. Harvesting news from different sources also creates
duplicates that need to be filtered out. Many of them can be
easily identified using URLs. However, it is not always trivial to
filter similar news, because the same URL can provide updated
content or a different URL can report the same news with a few
newsworthy modifications in the content or even contradictions.

Our Lifter [12] transforms the news and event streams into
semantic knowledge representations in real time according to an
event-description ontology [77]. It combines out-of-the-box NLP
systems such as DBpedia Spotlight'* and SpaCy'® and different
end-to-end deep learning models for semantically annotating po-
tentially news-relevant textual items with named entity linking,
relation extraction, sentiment and topic annotations, and links to
Wikidata and DBpedia. To integrate these annotations, we use the
NLP Interchange Format (NIF) [78]. As these components have
been designed as microservices with clear functional boundaries
to facilitate Interoperability and Modularity, variants of
the same components can be used to transform unstructured data
from RSS feeds and structured data from GDELT to knowledge
graphs. Furthermore, to scale the prototype in order to handle
the large amount of data produced by GDELT, we replicated the
GDELT Lifter components to avoid bottlenecks.

Knowledge base. The Knowledge Base includes a Source Archive
service implemented with Apache Cassandra, a Knowledge Graph
implemented with Blazegraph, a Current Windows built with
Apache Kafka and ksqlDB as a stream store. We are also in the
process of incorporating a vector store implemented with Vald.
Cassandra is used to store the textual information together with
the IRIs of the news-relevant items represented in the knowl-
edge graph. This decision allows us to reduce the data stored
in the knowledge graph; provide provenance by tracking news
representations back to their source; and facilitate new training
material for ML models based on the current state of our system.
The Knowledge Graph is distributed over four instances of Blaze-
graph: one dedicated to storing news-relevant items from news
articles and Twitter messages, and three to storing the events
from GDELT. These four instances ingest around 11M (11 - 108)
triples daily from news and tweets, and another 11M (11 - 10°)

14
15

www.dbpedia-spotlight.org
spacy.io

http://www.newsapi.org
http://www.gdeltproject.org
http://www.dbpedia-spotlight.org
http://www.spacy.io

M. Gallofré Ocafia and A.L. Opdahl

from GDELT events. In a period of 6 months, it can ingest more
than 4B (6-10°) triples in total. We have observed that these large
amounts of triples cannot be held in a single triple-store instance
without affecting its performance.

Curator. The Curator implements an Enricher, an Event detec-
tor and an Angle detector. Our Enricher extends the annotated
items with location-related background information extracted
from DBpedia, Wikidata and other LOD sources. Our Event De-
tector provides journalists with aggregated and real-time events
detected from GDELT streams. The Angle Detector analyses the
representations of the news items to identify location angles for
a set of selected locations of interest [77]. As the Angler Detector
analyses the news-relevant item representations from all sources,
we had to replicate it to meet the velocity and volume demands.
The Learner implements a Schema updater that monitors incom-
ing GDELT events to identify new themes and update our themes
hierarchy and mappings accordingly.

Feeder and Retriever. The Feeder provides an API that exposes
a feed of annotated news-relevant items from the Knowledge
Base and allows external users to interact with our system. To
explore co-development with external contributors, we ran a
research challenge'® where external developers were invited to
submit solutions using live feeds directly from the knowledge
base [84]. In addition, we collaborated in another research chal-
lenge!” where participants had access to news and images from
our system to explore the connection between text and images.
Our Retriever exposes several APIs to access the Knowledge Base
and other services of the system. On top of the Retriever AP],
we developed an editing interface for journalists to recommend
relevant information for the story the journalist is working on and
provide background information for the entities present in the
text. We have observed that extracting background information
from Wikidata and DBpedia presents many challenges as entities
from the same categories are not in general represented following
the same structure and using the same properties.

Infrastructure. Our prototype runs on 28 cloud instances (with a
total of 94 vCPU, 312 GB RAM and 20 TB disk)'®. We used Ansible
and Terraform to automatically set up the instances and Docker
Swarm for orchestrating a total of 114 services as containerised
applications (i.e., 70 services related to the JKP and the rest for
monitoring these services and the cloud instances). These services
run as containerised applications and are exposed through APIs
that facilitate their replacement with newer versions without
affecting the performance of the platform. We also decided to de-
couple the ML/DL models from the applications by exposing them
through APIs, allowing us to switch the model at any time. By
following these principles, we developed a system that allowed us
to experiment with and meet the Scalability and Velocity
requirements. Our prototype downloads news items and trans-
forms them into graphs within an average of 21.112 seconds per
news item, with a standard deviation of 9.906 seconds, including
sleep and network waiting times. If we only take the system and
user CPU time, our prototype takes an average of 0.246 seconds
per item, with a standard deviation of 0.083 seconds. The text
of the news items varies in length, with an average length of
3305.18 characters per item and a standard deviation of 3742.22.
This reflects on the extracted graphs that have an average of

16 https://multimediaeval.github.io/editions/2021/tasks/emergingnews

17 https://multimediaeval.github.io/editions/2022/tasks/newsimages

18 The cloud instances run on different models of CPU (Intel Xeon CPU E5-2680
v3 @ 2.50 GHz, Intel Xeon CPU E5-2680 v4 @ 2.40 GHz, Intel Xeon Gold 6226
CPU @ 2.70 GHz, Intel Xeon Gold 5317 CPU @ 3.00 GHz, AMD EPYC 7452 @
2.35 GHz) and memory speeds (2133 MT/s, 2400 MT/s, 2933 MT/s, 3200 MT/s)
respectively.

12

Knowledge-Based Systems 276 (2023) 110750

712.38 triples per graph, with a standard deviation of 550.355. To
further evaluate these qualities, we plan to conduct stress-testing
experiments with our prototype by, for example, processing all
tweets produced by Twitter in a single day or re-processing in a
single day the equivalent of the harvested news in a month.

To support communication between services, we serialised
the messages using JSON-LD'? and semantic vocabularies, as well
as employed Apache Kafka as a message broker. JSON-LD is a
popular extension of JSON for serialising linked data. Apache
Kafka is a framework where independent services communicate
through subscription to topics and production and consumption
of messages with associated metadata (e.g., topic, key and times-
tamp). To add or duplicate a service, we only needed to assign it
to the desired message stream. This also allowed us to duplicate
services to meet specific workloads or add new ones effortlessly.

Earlier JKP prototypes, that ran on a simpler infrastructure
without an equally carefully planned architecture [36], have al-
ready implemented additional functionalities, which we plan to
adapt into the current prototype. In the development of the
prototype, different people contributed to adapting the old com-
ponents and creating new ones while the JKP was running. This
was in part possible by meeting the modularity requirement.

7.3. Threats to validity

Completeness. Completeness deals with the selection of earlier
projects that our work as based on. Our selection of JKP projects
has been systematically carried out in the context of an exten-
sive literature review of research on knowledge graphs for the
news [26]. We have not included non-JKP projects in our work
because JKPs exhibit a unique combination of characteristics that
we have not seen in other domains, such as real time, web-scale
data volumes, social media, text, multimedia, reference infor-
mation from other sources and evolving concepts and stories.
A limitation is that our work only covers the English-language
literature, and we have not identified any relevant JKPs developed
in geographical regions outside Europe, Canada and USA. We
have also only covered the research literature. Although there are
many commercial tools available for journalists and newsrooms,
they tend to be focused on single tasks and not on the platform
and architecture levels we address in this work.

Project access. Project access deals with the availability and re-
liability of information about earlier projects that our work is
grounded in. We have selected primary accounts of JKP projects
that are published in and available through reputed and peer-
reviewed international journals and conferences. However, as
we did not have access to the code of the related JKPs for re-
implementing them following our SRA, nor access to their input
and output data for comparing them with our proposed solution,
we could not run more detailed comparative evaluations.

Internal validity. Internal validity deals with the clarity of the
connections between evidence and conclusions. The qualitative
validation is based on our own reading and interpretation of the
requirements as presented in the primary studies. We traced each
requirement (both functional and non-functional) backwards to
its source, both in Section 5 and in the Appendix, and mapped
each requirement forward to a specific design decision in Sec-
tion 7.1. In addition to these mappings, the prototype is a direct
instantiation of the SRA for JKPs, and we have shown that it ad-
heres to all of the architecture principles outlined in Section 6.1.
Although the authors of this work are involved in the develop-
ment of the News Hunter platform, we have sought to reduce
bias by limiting the contribution of News Hunter to supporting
and extending the analysis of the literature and design of the SRA.

19 www.w3.0rg/TR/json-1d11

https://multimediaeval.github.io/editions/2021/tasks/emergingnews
https://multimediaeval.github.io/editions/2022/tasks/newsimages
http://www.w3.org/TR/json-ld11

M. Gallofré Ocafia and A.L. Opdahl

External validity. External validity deals with the usefulness and
validity of our results in other JKP contexts and other big-data and
Al domains beyond journalism. To ensure usefulness and validity
in a broad range of JKP contexts, we have taken all the rele-
vant research projects we have found into account and we have
collaborated with industrial users of more focussed journalistic
tools. To facilitate usefulness and validity in other domains with
similar required qualities, we have presented a high-level view
of the SRA that can potentially be adapted to other application
areas. However, our SRA has only been validated for JKPs, and
it would need further validation to be used for other purposes.
Language and region aspects should not pose a problem in terms
of generalisation, but multimedia analysis remains an area for
further research.

8. Conclusion

Grounded in the existing literature and supported by our
practical experience, we have proposed an empirically-grounded
SRA for JKPs. The purpose was to make it easier for news organ-
isations to evolve their existing independent systems for news
production towards integrated journalistic knowledge platforms
and to direct further research. Although the SRA has been driven
by the needs of journalism and news organisations, we have also
presented a more high-level view of the SRA that can potentially
serve as a proposal for a generic architecture for big-data and
knowledge-based Al systems in other domains.

Our architectural decisions are based on reported experiences
with existing platforms, supported by our own experience de-
veloping a JKP in collaboration with industry partners. The SRA
is based on proven architecture concepts and is designed to be
technology independent, open-ended and long-lasting, with com-
ponents and services that can be replaced and integrated with
other systems. It covers those components and functionalities
that are essential for JKPs and introduces Learner and Curator
components that are not considered in the previous literature.
It provides a vocabulary to compare and understand different
realisations of JKPs.

13

Knowledge-Based Systems 276 (2023) 110750

To demonstrate the feasibility of the proposed SRA, we have
implemented a proof-of-concept prototype of JKP that instan-
tiates it. We have developed the prototype iteratively and in-
crementally in order to continuously evaluate our SRA design.
Validating the SRA in a newsroom production environment and
assessing its real and perceived value for practitioners is left for
further work.

In further work, we also want to explore the combination
of knowledge graphs and vector databases and its implication
for our architectural decisions. One possible benefit is improved
explainability. We want to investigate how the results of machine
learning techniques that employ vectors can be explained by
analysing the knowledge representations related to those vectors.
Moreover, we want to explore the benefits of expanding the
Learner to learn from whole system, to learn not only from the Al
models and knowledge representations but also from the usage
and performance of each component. This will allow the Learner
to adapt and personalise the components to the user’s needs and
the domain of the Al system.

CRediT authorship contribution statement

Marc Gallofré Ocaia: Conceptualization, Investigation,
Methodology, Software, Validation, Writing - original draft,
Writing - review & editing. Andreas L. Opdahl: Conceptualiza-
tion, Funding acquisition, Methodology, Project administration,
Resources, Supervision, Writing - review & editing.
Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

M. Gallofré Ocafia and A.L. Opdahl Knowledge-Based Systems 276 (2023) 110750

Appendix. Required qualities and their information sources

Table A.6
Functional required qualities and the projects that dealt with them.

Annotating Knowledge-representation Enriching Schema-evolution Model-updating

v

PlanetOnto
Neptuno
Annoterra
SemNews
Hermes

BBC CMS
NEWS

Event Registry
NewsReader
Reuters Tracer
SUMMA
INJECT
ASRAEL

LS S S L 8 G
<<

A S N S S S S S RSN
A SN S S S S S RSN
AN S S S S SRS

<

2}
o
o
s
o

o
©

Data-ownership Privacy Provenance

PlanetOnto
Neptuno
Annoterra
SemNews
Hermes

BBC CMS
NEWS

Event Registry
NewsReader
Reuters Tracer
SUMMA
INJECT
ASRAEL

v v

A N § Y
E

<L
LR

A S S S N S S S RN
<

Table A.7
Non-functional required qualities and the projects that dealt with them.

Interoperability Modularity Scalability Velocity

PlanetOnto
Neptuno
Annoterra
SemNews
Hermes

BBC CMS
NEWS

Event Registry
NewsReader
Reuters Tracer
SUMMA
INJECT
ASRAEL v

v v
v

€ € << <K<Kk
<L

LK
LS SN

<

Variety Knowledge-evolution Sub-/symbolic-AI Trustworthy-AI

PlanetOnto

Neptuno v

Annoterra v

SemNews

Hermes v
BBC CMS
NEWS

Event Registry
NewsReader
Reuters Tracer
SUMMA
INJECT
ASRAEL

< < <X
<<

14

M. Gallofré Ocafia and A.L. Opdahl

References

(1

[2]

3

[4

[5

6

17

(8

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

C. Beckett, New Powers, New Responsibilities: a Global Survey of Jour-
nalism and Artificial Intelligence, Tech. Rep., Polis, London School of
Economics and Political Science, 2019, URL https://blogs.Ise.ac.uk/polis/
2019/11/18/new-powers-new-responsibilities.

J. Véazquez Herrero, S. Direito-Rebollal, AS. Rodri guez, X. Garcia,
Journalistic Metamorphosis: media Transformation in the Digital Age,
Springer International publishing, 2020, http://dx.doi.org/10.1007/978-3-
030-36315-4.

U. Germann, R. Liepins, G. Barzdins, D. Gosko, S. Miranda, D. Nogueira, The
SUMMA platform: A scalable infrastructure for multi-lingual multi-media
monitoring, in: Proceedings of ACL 2018, System Demonstrations, 2018,
http://dx.doi.org/10.18653/v1/P18-4017.

S.C. Lewis, O. Westlund, Big data and journalism, Digit. Journal. 3 (3) (2015)
http://dx.doi.org/10.1080/21670811.2014.976418.

S. Martinez-Fernandez,]. Bogner, X. Franch, M. Oriol,]. Siebert, A. Trendow-
icz, AM. Vollmer, S. Wagner, Software engineering for Al-based systems:
A survey, ACM Trans. Softw. Eng. Methodol. 31 (2) (2022) http://dx.doi.
org/10.1145/3487043.

A. d’Avila Garcez, L.C. Lamb, Neurosymbolic Al: The 3rd wave, 2020,
arXiv:2012.05876.

Aidan Hogan, et al., Knowledge graphs, ACM Comput. Surv. 54 (4) (2021)
http://dx.doi.org/10.1145/3447772.

M. Gallofré Ocaiia, A.L. Opdahl, Supporting newsrooms with journalistic
knowledge graph platforms: Current state and future directions, Technolo-
gies 10 (3) (2022) http://dx.doi.org/10.3390/technologies10030068.

Y. Raimond, T. Scott, S. Oliver, P. Sinclair, M. Smethurst, Use of semantic
web technologies on the BBC web sites, in: Linking Enterprise Data, 2010,
http://dx.doi.org/10.1007/978-1-4419-7665-9_13.

C. Rudnik, T. Ehrhart, O. Ferret, D. Teyssou, R. Troncy, X. Tannier, Searching
news articles using an event knowledge graph leveraged by wikidata, in:
Companion Proceedings of the 2019 World Wide Web Conference, 2019,
http://dx.doi.org/10.1145/3308560.3316761.

C. Bizer, T. Heath, T. Berners-Lee, Linked data: The story so far, in: Semantic
Services, Interoperability and Web Applications: Emerging Concepts, IGI
global, 2011, pp. 205-227.

T. Al-Moslmi, M. Gallofré Ocafia, Lifting news into a Journalistic Knowledge
Platform, in: Proceedings of the CIKM 2020 Workshops, 2020, URL http:
/[ceur-ws.org/Vol-2699/paper42.pdf.

N. Fernandez, D. Fuentes, L. Sanchez, J.A. Fisteus, The NEWS ontology:
Design and applications, Expert Syst. Appl. 37 (12) (2010) http://dx.doi.
org/10.1016/j.eswa.2010.06.055.

T.A.A. Al-Moslmi, M. Gallofré Ocafia, A.L. Opdahl, B. Tessem, Detecting
newsworthy events in a journalistic platform, in: The 3rd European Data
and Computational Journalism Conference, 2019.

G. Leban, B. Fortuna,]. Brank, M. Grobelnik, Event registry: Learning
about world events from news, in: Proceedings of the 23rd International
Conference on World Wide Web, 2014, http://dx.doi.org/10.1145/2567948.
2577024.

P. Vossen, R. Agerri, 1. Aldabe, A. Cybulska, M. van Erp, A. Fokkens, E.
Laparra, A.-L. Minard, A.P. Aprosio, G. Rigau, M. Rospocher, R. Segers,
NewsReader: Using knowledge resources in a cross-lingual reading ma-
chine to generate more knowledge from massive streams of news, in:
Special Issue Knowledge-Based Systems, Vol. 110, Elsevier, 2016, http:
//dx.doi.org/10.1016/j.knosys.2016.07.013.

E. Motta, E. Daga, AL Opdahl, B. Tessem, Analysis and design of
computational news angles, IEEE Access (2020).

M. Gallofré Ocafia, T. Al-Moslmi, A.L. Opdahl, Data privacy in Journalistic
Knowledge Platforms, in: Proceedings of the CIKM 2020 Workshops, 2020,
URL http://ceur-ws.org/Vol-2699/paper44.pdf.

S. Nadal, V. Herrero, O. Romero, A. Abell$, X. Franch, S. Vansummeren,
D. Valerio, A software reference architecture for semantic-aware big data
systems, Inf. Softw. Technol. 90 (2017) http://dx.doi.org/10.1016/j.infsof.
2017.06.001.

B. Sena, A.P. Allian, E.Y. Nakagawa, Characterizing big data software
architectures: A systematic mapping study, in: Proceedings of the 11th
Brazilian Symposium on Software Components, Architectures, and Reuse,
SBCARS ’17, Association for Computing Machinery, New York, NY, USA,
2017, http://dx.doi.org/10.1145/3132498.3132510.

B. Sena, L. Garcés, A.P. Allian, E.Y. Nakagawa, Investigating the applicability
of architectural patterns in big data systems, in: Proceedings of the 25th
Conference on Pattern Languages of Programs, PLoP 18, The Hillside Group,
USA, 2018.

C. Avci, B. Tekinerdogan, L.N. Athanasiadis, Software architectures for big
data: A systematic literature review, Big Data Anal. 5 (1) (2020) 1-53.

P. Ataei, AT. Litchfield, Big data reference architectures, a systematic
literature review, in: ACIS 2020 Proceedings, (30) 2020, URL https://aisel.
aisnet.org/acis2020/30.

15

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]
[44]

[45]

[46]

Knowledge-Based Systems 276 (2023) 110750

T.V.R. da Costa, E. Cavalcante, T. Batista, Big data software architectures:
An updated review, in: O. Gervasi, B. Murgante, E.M.T. Hendrix, D. Taniar,
B.0. Apduhan (Eds.), Computational Science and Its Applications - ICCSA
2022, Springer International Publishing, Cham, 2022, pp. 477-493.

M. Gallofré Ocafia, A.L. Opdahl, Developing a software reference archi-
tecture for journalistic knowledge platforms, in: ECSA2021 Companion
Volume, 2021.

AL. Opdahl, T. Al-Moslmi, D.-T. Dang-Nguyen, M. Gallofré Ocafia, B.
Tessem, C. Veres, Semantic knowledge graphs for the news: A review,
ACM Comput. Surv. (2022) http://dx.doi.org/10.1145/3543508.

S. Angelov, P. Grefen, D. Greefhorst, A framework for analysis and design
of software reference architectures, Inf. Softw. Technol. 54 (4) (2012)
http://dx.doi.org/10.1016/j.infsof.2011.11.009.

S. Angelov,].J. Trienekens, P. Grefen, Towards a method for the evaluation
of reference architectures: Experiences from a case, in: Software Archi-
tecture. ECSA 2008, 2008, http://dx.doi.org/10.1007/978-3-540-88030-1_
17.

T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word
representations in vector space, 2013, 10.48550/ARXIV.1301.3781.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, t.
Kaiser, I. Polosukhin, Attention is all you need, in: I. Guyon, U.V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.),
in: Advances in Neural Information Processing Systems, Vol. 30, Curran
Associates, Inc., 2017, URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of deep
bidirectional transformers for language understanding, in: Proceedings of
the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Vol. 1,
Association for Computational Linguistics, Minneapolis, Minnesota, 2019,
pp. 4171-4186, http://dx.doi.org/10.18653/v1/N19-1423, (Long and Short
Papers).

T. Brown, B. Mann, N. Ryder, M. Subbiah, J.D. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., Language models are
few-shot learners, Adv. Neural Inf. Process. Syst. 33 (2020) 1877-1901.
Y.A. Malkov, D.A. Yashunin, Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs, IEEE
Trans. Pattern Anal. Mach. Intell. 42 (4) (2020) 824-836, http://dx.doi.org/
10.1109/TPAMI.2018.2889473.

J. Johnson, M. Douze, H. Jégou, Billion-scale similarity search with GPUs,
IEEE Trans. Big Data 7 (3) (2019) 535-547.

M. Galster, P. Avgeriou, Empirically-grounded reference architectures: A
proposal, in: Proceedings of the Joint ACM SIGSOFT Conference - QoSA
and ACM SIGSOFT Symposium - ISARCS on Quality of Software Architec-
tures - QoSA and Architecting Critical Systems - ISARCS, Association for
Computing Machinery, 2011, http://dx.doi.org/10.1145/2000259.2000285.
A. Berven, O.A. Christensen, S. Moldeklev, A.L. Opdahl, KJ. Villanger, A
knowledge-graph platform for newsrooms, Comput. Ind. 123 (2020) http:
//dx.doi.org/10.1016/j.compind.2020.103321.

M. Gallofré Ocaiia, L. Nyre, A.L. Opdahl, B. Tessem, C. Trattner, C. Veres,
Towards a big data platform for news angles, in: 4th Norwegian Big Data
Symposium, NOBIDS 2018, 2018, URL http://ceur-ws.org/Vol-2316/paper1.
pdf.

A. Tverberg, 1. Agasester, M. Grgnback, R.S. Marius Monsen, K. Eikeland,
E. Trondsen, L. Westvang, T.B. Knudsen, E. Fiskerud, R. Skdr, S. Stoppel, A.
Berven, G.S. Pedersen, P. Macklin, K. Cuomo, L. Vredenberg, K. Tolonen, A.L.
Opdahl, B. Tessem, C. Veres, D.-T. Dang-Nguyen, E. Motta, V.J. Setty, WP3
2021 M3.1 Report the Industrial Expectations to, Needs from and Wishes
for the Work Package, Tech. Rep., University of Bergen, MediaFutures, 2021.
H.A. Simon, The Sciences of the Artificial, MIT Press, 1996.

A. Hevner, S. Chatterjee, Design science research in information systems,
2010, http://dx.doi.org/10.1007/978-1-4419-5653-8_2.

AR. Hevner, A three cycle view of design science research, Scand. J. Inf.
Syst. 19 (2) (2007) URL https://aisel.aisnet.org/sjis/vol19/iss2/4.

AR. Hevner, S.T. March, J. Park, S. Ram, Design science in information
systems research, MIS Q. 28 (1) (2004) URL http://www.jstor.org/stable/
25148625.

T. Berners-Lee,]J. Hendler, O. Lassila, The semantic web, Sci. Am. 284 (5)
(2001) 34-43, URL http://www.jstor.org/stable/26059207.

N. Shadbolt, T. Berners-Lee, W. Hall, The semantic web revisited, IEEE Intell.
Syst. 21 (3) (2006) 96-101, http://dx.doi.org/10.1109/MIS.2006.62.

J. Domingue, E. Motta, PlanetOnto: From news publishing to integrated
knowledge management support, IEEE Intell. Syst. Appl. 15 (3) (2000)
26-32, http://dx.doi.org/10.1109/5254.846282.

Y. Kalfoglou, J. Domingue, E. Motta, M. Vargas-Vera, S. Buckingham Shum,
Myplanet: An ontology driven web based personalised news service, in:
Proceedings of International Joint Conference on Artificial Intelligence, Vol.
2001, International Joint Conferences on Artificial Intelligence, 2001, pp.
44-52, URL http://ceur-ws.org/Vol-47kalfoglou.pdf.

https://blogs.lse.ac.uk/polis/2019/11/18/new-powers-new-responsibilities
https://blogs.lse.ac.uk/polis/2019/11/18/new-powers-new-responsibilities
https://blogs.lse.ac.uk/polis/2019/11/18/new-powers-new-responsibilities
http://dx.doi.org/10.1007/978-3-030-36315-4
http://dx.doi.org/10.1007/978-3-030-36315-4
http://dx.doi.org/10.1007/978-3-030-36315-4
http://dx.doi.org/10.18653/v1/P18-4017
http://dx.doi.org/10.1080/21670811.2014.976418
http://dx.doi.org/10.1145/3487043
http://dx.doi.org/10.1145/3487043
http://dx.doi.org/10.1145/3487043
http://arxiv.org/abs/2012.05876
http://dx.doi.org/10.1145/3447772
http://dx.doi.org/10.3390/technologies10030068
http://dx.doi.org/10.1007/978-1-4419-7665-9_13
http://dx.doi.org/10.1145/3308560.3316761
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb11
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb11
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb11
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb11
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb11
http://ceur-ws.org/Vol-2699/paper42.pdf
http://ceur-ws.org/Vol-2699/paper42.pdf
http://ceur-ws.org/Vol-2699/paper42.pdf
http://dx.doi.org/10.1016/j.eswa.2010.06.055
http://dx.doi.org/10.1016/j.eswa.2010.06.055
http://dx.doi.org/10.1016/j.eswa.2010.06.055
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb14
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb14
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb14
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb14
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb14
http://dx.doi.org/10.1145/2567948.2577024
http://dx.doi.org/10.1145/2567948.2577024
http://dx.doi.org/10.1145/2567948.2577024
http://dx.doi.org/10.1016/j.knosys.2016.07.013
http://dx.doi.org/10.1016/j.knosys.2016.07.013
http://dx.doi.org/10.1016/j.knosys.2016.07.013
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb17
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb17
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb17
http://ceur-ws.org/Vol-2699/paper44.pdf
http://dx.doi.org/10.1016/j.infsof.2017.06.001
http://dx.doi.org/10.1016/j.infsof.2017.06.001
http://dx.doi.org/10.1016/j.infsof.2017.06.001
http://dx.doi.org/10.1145/3132498.3132510
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb21
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb21
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb21
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb21
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb21
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb21
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb21
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb22
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb22
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb22
https://aisel.aisnet.org/acis2020/30
https://aisel.aisnet.org/acis2020/30
https://aisel.aisnet.org/acis2020/30
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb24
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb24
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb24
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb24
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb24
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb24
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb24
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb25
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb25
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb25
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb25
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb25
http://dx.doi.org/10.1145/3543508
http://dx.doi.org/10.1016/j.infsof.2011.11.009
http://dx.doi.org/10.1007/978-3-540-88030-1_17
http://dx.doi.org/10.1007/978-3-540-88030-1_17
http://dx.doi.org/10.1007/978-3-540-88030-1_17
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb29
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb29
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb29
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://dx.doi.org/10.18653/v1/N19-1423
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb32
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb32
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb32
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb32
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb32
http://dx.doi.org/10.1109/TPAMI.2018.2889473
http://dx.doi.org/10.1109/TPAMI.2018.2889473
http://dx.doi.org/10.1109/TPAMI.2018.2889473
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb34
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb34
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb34
http://dx.doi.org/10.1145/2000259.2000285
http://dx.doi.org/10.1016/j.compind.2020.103321
http://dx.doi.org/10.1016/j.compind.2020.103321
http://dx.doi.org/10.1016/j.compind.2020.103321
http://ceur-ws.org/Vol-2316/paper1.pdf
http://ceur-ws.org/Vol-2316/paper1.pdf
http://ceur-ws.org/Vol-2316/paper1.pdf
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb38
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb38
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb38
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb38
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb38
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb38
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb38
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb38
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb38
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb38
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb38
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb39
http://dx.doi.org/10.1007/978-1-4419-5653-8_2
https://aisel.aisnet.org/sjis/vol19/iss2/4
http://www.jstor.org/stable/25148625
http://www.jstor.org/stable/25148625
http://www.jstor.org/stable/25148625
http://www.jstor.org/stable/26059207
http://dx.doi.org/10.1109/MIS.2006.62
http://dx.doi.org/10.1109/5254.846282
http://ceur-ws.org/Vol-47/kalfoglou.pdf

M. Gallofré Ocafia and A.L. Opdahl

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

P. Castells, F. Perdrix, E. Pulido, M. Rico, R. Benjamins, J. Contreras, J. Lorés,
Neptuno: Semantic web technologies for a digital newspaper archive, in:
The Semantic Web: Research and Applications. ESWS 2004, 2004, http:
//dx.doi.org/10.1007/978-3-540-25956-5_31.

D.B. Ramagem, B. Margerin,]. Kendall, AnnoTerra: Building an integrated
earth science resource using semantic web technologies, IEEE Intell. Syst.
19 (3) (2004) http://dx.doi.org/10.1109/MIS.2004.3.

A. Java, T. Finin, S. Nirenburg, SemNews: A semantic news framework,
in: The Twenty-First National Conference on Artificial Intelligence and
the Eighteenth Innovative Applications of Artificial Intelligence Conference,
2006, URL https://[www.aaai.org/Papers/AAAI/2006/AAAI06-316.pdf.

K. Schouten, P. Ruijgrok,]J. Borsje, F. Frasincar, L. Levering, F. Hogenboom,
A semantic web-based approach for personalizing news, in: Proceedings
of the 2010 ACM Symposium on Applied Computing - SAC '10, ACM
Press, Sierre, Switzerland, 2010, p. 854, http://dx.doi.org/10.1145/1774088.
1774264.

G. Kobilarov, T. Scott, Y. Raimond, S. Oliver, C. Sizemore, M. Smethurst,
C. Bizer, R. Lee, Media meets semantic web - how the BBC uses DBpedia
and linked data to make connections, in: The Semantic Web: Research and
Applications, Vol. 5554, 2009, http://dx.doi.org/10.1007/978-3-642-02121-
3.53.

N. Fernidndez, J.M. Blazquez, J.A. Fisteus, L. Sanchez, M. Sintek, A. Bernardi,
M. Fuentes, A. Marrara, Z. Ben-Asher, NEWS: Bringing semantic web
technologies into news agencies, in: The Semantic Web - ISWC 2006, 2006,
pp. 778-791, http://dx.doi.org/10.1007/11926078_56.

M. Rospocher, M. van Erp, P. Vossen, A. Fokkens, 1. Aldabe, G. Rigau, A.
Soroa, T. Ploeger, T. Bogaard, Building event-centric knowledge graphs
from news, J. Web Semant. 37-38 (2016) 132-151, http://dx.doi.org/10.
1016/j.websem.2015.12.004.

Q. Li, S. Shah, X. Liu, A. Nourbakhsh, R. Fang, TweetSift: Tweet topic
classification based on entity knowledge base and topic enhanced word
embedding, in: Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management, CIKM '16, Association for
Computing Machinery, New York, NY, USA, 2016, pp. 2429-2432, http:
//dx.doi.org/10.1145/2983323.2983325.

X. Liu, Q. Li, A. Nourbakhsh, R. Fang, M. Thomas, K. Anderson, R. Kociuba,
M. Vedder, S. Pomerville, R. Wudali, R. Martin,]J. Duprey, A. Vachher,
W. Keenan, S. Shah, Reuters tracer: A large scale system of detecting
& verifying real-time news events from Twitter, in: Proceedings of the
25th ACM International on Conference on Information and Knowledge
Management, CIKM '16, Association for Computing Machinery, New York,
NY, USA, 2016, pp. 207-216, http://dx.doi.org/10.1145/2983323.2983363.
X. Liu, A. Nourbakhsh, Q. Li, S. Shah, R. Martin, J. Duprey, Reuters tracer:
Toward automated news production using large scale social media data,
in: 2017 IEEE International Conference on Big Data (Big Data), IEEE, 2017,
pp. 1483-1493.

S. Miranda, D. Nogueira, A. Mendes, A. Vlachos, A. Secker, R. Garrett,
J. Mitchel, Z. Marinho, Automated fact checking in the news room, in:
The World Wide Web Conference, WWW ’19, Association for Comput-
ing Machinery, 2019, pp. 3579—3583, http://dx.doi.org/10.1145/3308558.
3314135.

N. Maiden, K. Zachos, A. Brown, G. Brock, L. Nyre, A. Nygdrd Tonheim,
D. Apsotolou, J. Evans, Making the news: Digital creativity support for
journalists, in: Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems, Association for Computing Machinery, New York,
NY, USA, 2018, pp. 1-11, http://dx.doi.org/10.1145/3173574.3174049.

F. Frasincar, J. Borsje, L. Levering, A semantic web-based approach for
building personalized news services, Int. J. E-Business Res. (IJEBR) 5 (3)
(2009) 35-53.

D. Le-Phuoc, H.Q. Nguyen-Mau, J.X. Parreira, M. Hauswirth, A middleware
framework for scalable management of linked streams, J. Web Semant. 16
(2012) http://dx.doi.org/10.1016/j.websem.2012.06.003, The Semantic Web
Challenge 2011.

M.A. Martinez-Prieto, C.E. Cuesta, M. Arias,].D. Fernindez, The SOLID
architecture for real-time management of big semantic data, Future
Gener. Comput. Syst. 47 (2015) http://dx.doi.org/10.1016/j.future.2014.10.
016, Special Section: Advanced Architectures for the Future Generation of
Software-Intensive Systems.

16

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]
[76]

[77]

[78]

[79]

[80]

(81]

(82]

[83]

[84]

Knowledge-Based Systems 276 (2023) 110750

N. Marz, How to beat the CAP theorem, 2011, URL http://nathanmarz.com/
blog/how-to-beat-the-cap-theorem.html.

P. P, Reference architecture and classification of technologies, products and
services for big data systems, Big Data Res. 2 (4) (2015) http://dx.doi.org/
10.1016/j.bdr.2015.01.001.

D. Xu, D. Wu, X. Xu, L. Zhu, L. Bass, Making real time data analytics
available as a service, in: Proceedings of the 11th International ACM
SIGSOFT Conference on Quality of Software Architectures, QoSA '15, As-
sociation for Computing Machinery, New York, NY, USA, 2015, pp. 73-82,
http://dx.doi.org/10.1145/2737182.2737186.

G.M. Sang, L. Xu, P. de Vrieze, A reference architecture for big data
systems, in: 2016 10th International Conference on Software, Knowledge,
Information Management & Applications, SKIMA, 2016, pp. 370-375, http:
//dx.doi.org/10.1109/SKIMA.2016.7916249.

L. Heilig, S. VoR, Managing cloud-based big data platforms: A reference
architecture and cost perspective, in: Big Data Management, Springer
International Publishing, Cham, 2017, pp. 29-45, http://dx.doi.org/10.1007/
978-3-319-45498-6_2.

S. Martinez-Ferndndez, C.P. Ayala, X. Franch, H.M. Marques, Benefits and
drawbacks of software reference architectures: A case study, Inf. Softw.
Technol. 88 (2017) http://dx.doi.org/10.1016/j.infsof.2017.03.011.

M.K. Sarker, L. Zhou, A. Eberhart, P. Hitzler, Neuro-symbolic artificial
intelligence: Current trends, 2021, arXiv preprint arXiv:2105.05330.
High-Level Expert Group on Artificial Intelligence, Ethics Guidelines for
Trustworthy Al, Tech. Rep., European Commission, 2019, URL https://
digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai.
N. Dragoni, S. Giallorenzo, A.L. Lafuente, M. Mazzara, F. Montesi, R.
Mustafin, L. Safina, Microservices: Yesterday, today, and tomorrow,
in: Present and Ulterior Software Engineering, Springer International
publishing, 2017, http://dx.doi.org/10.1007/978-3-319-67425-4_12.

R.C. Fernandez, P.R. Pietzuch,]. Kreps, N. Narkhede,]. Rao, J. Koshy, D.
Lin, C. Riccomini, G. Wang, Liquid: Unifying nearline and offline big data
integration, in: Proceedings of the 7th Biennial Conference on Innovative
Data Systems Research, CIDR, 2015.

J. Kreps, Questioning the lambda architecture, 2014, URL https://www.
oreilly.com/radar/questioning-the-lambda-architecture.

F. Cerezo, C.E. Cuesta,].C. Moreno-Herranz, B. Vela, Deconstructing the
Lambda architecture: An experience report, in: 2019 IEEE International
Conference on Software Architecture Companion (ICSA-C), 2019, http:
//dx.doi.org/10.1109/ICSA-C.2019.00042.

H.P. Nii, The blackboard model of problem solving and the evolution of
blackboard architectures, Al Mag. 7 (2) (1986) 38.

L.D. Craig, Blackboard systems, Artif. Intell. Rev. 2 (2) (1988) 103-118.

F. Lecue, On the role of knowledge graphs in explainable Al, Semantic Web
11 (1) (2020) 41-51.

A.L. Opdahl, B. Tessem, Ontologies for finding journalistic angles, Softw.
Syst. Model. (2020) http://dx.doi.org/10.1007/s10270-020-00801-w.

S. Hellmann, J. Lehmann, S. Auer, M. Briimmer, Integrating NLP using linked
data, in: The Semantic Web - ISWC 2013, 2013, http://dx.doi.org/10.1007/
978-3-642-41338-4_7.

A. Fokkens, A. Soroa, Z. Beloki, N. Ockeloen, G. Rigau, W.R. Van Hage, P.
Vossen, NAF and GAF: Linking linguistic annotations, in: Proceedings 10th
Joint ISO-ACL SIGSEM Workshop on Interoperable Semantic Annotation,
2014.

H. Dibowski, S. Schmid, Using knowledge graphs to manage a data lake,
in: INFORMATIK 2020, Gesellschaft fiir Informatik, Bonn, 2021, pp. 41-50,
http://dx.doi.org/10.18420/inf2020_02.
W3C, Largetriplestores, 2020,
LargeTripleStores.

B. Tessem, M. Gallofré Ocafa, A.L. Opdahl, Construction of a relevance
knowledge graph with application to the LOCAL news angle, in: Nordic
Artificial Intelligence Research and Development, 2023.

B. Tessem, Analogical news angles from text similarity, in: Artificial
Intelligence XXXVI, 2019, http://dx.doi.org/10.1007/978-3-030-34885-4_
35.

M. Gallofré Ocaiia, A.L. Opdahl, D.-T. Dang-Nguyen, Emerging News task:
Detecting emerging events from social media and news feeds, MediaEval,
2021.

URL https://www.w3.org/wiki/

http://dx.doi.org/10.1007/978-3-540-25956-5_31
http://dx.doi.org/10.1007/978-3-540-25956-5_31
http://dx.doi.org/10.1007/978-3-540-25956-5_31
http://dx.doi.org/10.1109/MIS.2004.3
https://www.aaai.org/Papers/AAAI/2006/AAAI06-316.pdf
http://dx.doi.org/10.1145/1774088.1774264
http://dx.doi.org/10.1145/1774088.1774264
http://dx.doi.org/10.1145/1774088.1774264
http://dx.doi.org/10.1007/978-3-642-02121-3_53
http://dx.doi.org/10.1007/978-3-642-02121-3_53
http://dx.doi.org/10.1007/978-3-642-02121-3_53
http://dx.doi.org/10.1007/11926078_56
http://dx.doi.org/10.1016/j.websem.2015.12.004
http://dx.doi.org/10.1016/j.websem.2015.12.004
http://dx.doi.org/10.1016/j.websem.2015.12.004
http://dx.doi.org/10.1145/2983323.2983325
http://dx.doi.org/10.1145/2983323.2983325
http://dx.doi.org/10.1145/2983323.2983325
http://dx.doi.org/10.1145/2983323.2983363
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb56
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb56
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb56
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb56
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb56
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb56
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb56
http://dx.doi.org/10.1145/3308558.3314135
http://dx.doi.org/10.1145/3308558.3314135
http://dx.doi.org/10.1145/3308558.3314135
http://dx.doi.org/10.1145/3173574.3174049
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb59
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb59
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb59
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb59
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb59
http://dx.doi.org/10.1016/j.websem.2012.06.003
http://dx.doi.org/10.1016/j.future.2014.10.016
http://dx.doi.org/10.1016/j.future.2014.10.016
http://dx.doi.org/10.1016/j.future.2014.10.016
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
http://dx.doi.org/10.1016/j.bdr.2015.01.001
http://dx.doi.org/10.1016/j.bdr.2015.01.001
http://dx.doi.org/10.1016/j.bdr.2015.01.001
http://dx.doi.org/10.1145/2737182.2737186
http://dx.doi.org/10.1109/SKIMA.2016.7916249
http://dx.doi.org/10.1109/SKIMA.2016.7916249
http://dx.doi.org/10.1109/SKIMA.2016.7916249
http://dx.doi.org/10.1007/978-3-319-45498-6_2
http://dx.doi.org/10.1007/978-3-319-45498-6_2
http://dx.doi.org/10.1007/978-3-319-45498-6_2
http://dx.doi.org/10.1016/j.infsof.2017.03.011
http://arxiv.org/abs/2105.05330
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
http://dx.doi.org/10.1007/978-3-319-67425-4_12
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb71
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb71
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb71
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb71
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb71
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb71
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb71
https://www.oreilly.com/radar/questioning-the-lambda-architecture
https://www.oreilly.com/radar/questioning-the-lambda-architecture
https://www.oreilly.com/radar/questioning-the-lambda-architecture
http://dx.doi.org/10.1109/ICSA-C.2019.00042
http://dx.doi.org/10.1109/ICSA-C.2019.00042
http://dx.doi.org/10.1109/ICSA-C.2019.00042
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb74
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb74
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb74
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb75
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb76
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb76
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb76
http://dx.doi.org/10.1007/s10270-020-00801-w
http://dx.doi.org/10.1007/978-3-642-41338-4_7
http://dx.doi.org/10.1007/978-3-642-41338-4_7
http://dx.doi.org/10.1007/978-3-642-41338-4_7
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb79
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb79
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb79
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb79
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb79
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb79
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb79
http://dx.doi.org/10.18420/inf2020_02
https://www.w3.org/wiki/LargeTripleStores
https://www.w3.org/wiki/LargeTripleStores
https://www.w3.org/wiki/LargeTripleStores
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb82
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb82
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb82
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb82
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb82
http://dx.doi.org/10.1007/978-3-030-34885-4_35
http://dx.doi.org/10.1007/978-3-030-34885-4_35
http://dx.doi.org/10.1007/978-3-030-34885-4_35
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb84
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb84
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb84
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb84
http://refhub.elsevier.com/S0950-7051(23)00500-2/sb84

	A Software Reference Architecture for Journalistic Knowledge Platforms
	Introduction
	Background
	Central terms
	Software Reference Architecture
	Knowledge Graphs
	Embeddings and vector databases

	Method
	Related literature
	Journalistic Knowledge Platforms
	Software architectures for big data and semantic technologies

	Required qualities for the SRA
	Approach
	Required functional qualities
	Required non-Functional qualities
	Qualities addressed by the JKP projects

	Software reference architecture for JKPs
	Architectural principles
	High-level view
	SRA for JKPs
	Ingestor
	Knowledge Base
	Curator
	Learner
	Feeder
	Retriever

	Validation
	Mapping
	Prototype
	Threats to validity

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix. Required qualities and their information sources
	References

